The minimum number of independent coordinates or variables which is required to describe the motion of a dynamical system is known as generalized coordinates. For a system of N particles and for k constraints and d dimension, the number of independent coordinates f = dN-k . These ‘f’ number of minimum independent coordinates required to describe configuration and motion of a mechanical system are called generalized coordinates and are denoted by q_i (i=1,2,3,…,f) .
Generalized Displacement
Let us consider a N-particle system for which a small displacement δ(\overrightarrow{r_i}) is defined by change in position coordinates \overrightarrow{r_i}(i=1,2,,…,N) with time (t) kept as constant. The position vector \overrightarrow{r_i} of the i^{th} particle in the form of generalized coordinates can be written as
\overrightarrow{r_i}=\overrightarrow{r_i}((q_1, q_2, q_3, ... , q_f, t)
Using Euler’s theorem
δ\overrightarrow{r_i}=\frac{∂\overrightarrow{r_i}}{∂q_1}δq_1+\frac{∂\overrightarrow{r_i}}{∂q_2}δq_2+...+\frac{∂\overrightarrow{r_i}}{∂q_f}δq_f+\frac{∂\overrightarrow{r_i}}{∂t}δt\\
=>δ\overrightarrow{r_i}=\frac{∂\overrightarrow{r_i}}{∂q_1}δq_1+\frac{∂\overrightarrow{r_i}}{∂q_2}δq_2+...+\frac{∂\overrightarrow{r_i}}{∂q_f}δq_f\\
=>δ\overrightarrow{r_i}=\sum\limits_{j=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_j}δq_j
where δq_j represents generalized displacement.
Generalized Velocity
Let us consider a dynamical system at time t comprised of N particles.
Let each particle be specified by the n generalized coordinates q_1,q_2,q_3,…,q_n. Then the time derivative of the generalized coordinates q_j (j=1,2,3,…,n) is called the generalized velocity which is denoted by \dot{q_j }.
The position vector \overrightarrow{r_i} of the i^{th} particle in the form of generalized coordinates and time (t) can be written as
\overrightarrow{r_i}=\overrightarrow{r_i}((q_1, q_2, q_3, ... , q_f, t)
Using Euler’s theorem
d\overrightarrow{r_i}=\frac{∂\overrightarrow{r_i}}{∂q_1}dq_1+\frac{∂\overrightarrow{r_i}}{∂q_2}dq_2+...+\frac{∂\overrightarrow{r_i}}{∂q_f}dq_f+\frac{∂\overrightarrow{r_i}}{∂t}dt\\
=>\frac{d\overrightarrow{r_i}}{dt}=\frac{∂\overrightarrow{r_i}}{∂q_1}\frac{dq_1}{dt}+\frac{∂\overrightarrow{r_i}}{∂q_2}\frac{dq_2}{dt}+...+\frac{∂\overrightarrow{r_i}}{∂q_f}\frac{dq_f}{dt}+\frac{∂\overrightarrow{r_i}}{∂t}\frac{dt}{dt}\\
=>\frac{d\overrightarrow{r_i}}{dt}=\frac{∂\overrightarrow{r_i}}{∂q_1}\frac{dq_1}{dt}+\frac{∂\overrightarrow{r_i}}{∂q_2}\frac{dq_2}{dt}+...+\frac{∂\overrightarrow{r_i}}{∂q_f}\frac{dq_f}{dt}+\frac{∂\overrightarrow{r_i}}{∂t}\\
=>\overrightarrow{v}=\sum\limits_{j=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_j}\frac{dq_j}{dt}+\frac{∂\overrightarrow{r_i}}{∂t}
=>\overrightarrow{v}=\sum\limits_{j=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_j}\dot{q_j}+\frac{∂\overrightarrow{r_i}}{∂t}
where \dot{q_j} is called generalized velocity.
Generalized Acceleration
Let us consider a dynamical system at time t comprised of N particles.
Let each particle be specified by the n generalized coordinates q_1,q_2,q_3,…,q_n. Then the time derivative of the generalized velocity \dot{q_j} (j=1,2,3,…,n) is called the generalized acceleration which is denoted by \ddot{q_j}.
The velocity of the i^{th} particle in the form of generalized coordinates and time (t) can be written as
\overrightarrow{v}=\dot{\overrightarrow{r_i}}=\sum\limits_{k=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_k}\dot{q_k}+\frac{∂\overrightarrow{r_i}}{∂t}\qquad...(1)
Differentiating both sides w.r.t. ‘time’ we get
\dot{\overrightarrow{v}}=\ddot{\overrightarrow{r_i}}=\frac{d}{dt}\left[\sum\limits_{k=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_k}\dot{q_k}+\frac{∂\overrightarrow{r_i}}{∂t}\right]
=>\overrightarrow{a_i}=\frac{d}{dt}\left[\sum\limits_{k=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_k}\dot{q_k}\right]+\frac{d}{dt}\left[\frac{∂\overrightarrow{r_i}}{∂t}\right]
=>\overrightarrow{a_i}=\sum\limits_{k=1}^{f}\frac{\dot{∂\overrightarrow{r_i}}}{∂q_k}\dot{q_k}+\sum\limits_{k=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_k}\ddot{q_k}+\frac{∂\dot{\overrightarrow{r_i}}}{∂t}\qquad...(2)
Using equation (1) in equation (2) we get,
=>\overrightarrow{a_i}=\sum\limits_{k=1}^{f}\frac{∂}{∂q_k}\left[\sum\limits_{j=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_j}\dot{q_j}+\frac{∂\overrightarrow{r_i}}{∂t}\right]\dot{q_k}+\sum\limits_{k=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_k}\ddot{q_k}+\frac{∂}{∂t}\left[\sum\limits_{j=1}^{f}\frac{∂\overrightarrow{r_i}}{∂q_j}\dot{q_j}+\frac{∂\overrightarrow{r_i}}{∂t}\right]
which is the required generalized acceleration.
Generalized Force
Let us consider a N-particle system with no constraints imposed on the system.
Let a force \sum\limits_{i=1}^{N}F_i be acting on the system causing an arbitrary small displacement δ\overrightarrow{r_i} of the system by doing work δW which is given by
δW=\sum\limits_{i=1}^{N}F_i.δ\overrightarrow{r_i}\qquad...(1)
We have,
δ\overrightarrow{r_i}=\sum\limits_{j=1}^{3N}\frac{∂\overrightarrow{r_i}}{∂q_j}δq_j\qquad...(2)
Using (2) in (1) we get,
δW=\sum\limits_{i=1}^{N}F_i.\sum\limits_{j=1}^{3N}\frac{∂\overrightarrow{r_i}}{∂q_j}δq_j
=>δW=\sum\limits_{j=1}^{3N}Q_j.δq_j , where Q_j=\sum\limits_{i=1}^{N}F_i.\frac{∂\overrightarrow{r_i}}{∂q_j}
where Q_j is called generalized force.
Generalized Momentum
Let us consider a N-particle system with no constraints imposed on the system.
The K.E. T of the i^{th} particle having mass m_i and velocity v_i of a system is given by
T=\frac{1}{2}m_i {v_i}^2
=>T=\frac{1}{2}m_i (\frac{dx_i}{dt})^2
=>T=\frac{1}{2}m_i (\dot{x_i})^2\qquad...(1)
Differentiating equation (1) partially w.r.t. \dot{x_i} we get,
\frac{∂T}{∂\dot{x_i}}=m_i \dot{x_i}\qquad...(2)
Linear momentum p_i of the particle is given by
p_i=m_iv_i
=>p_i=m_i\frac{dx_i}{dt}
=>p_i=m_i\dot{x_i}\qquad...(3)
Comparing (2) and (3) we get,
p_i=\frac{∂T}{∂\dot{x_i}}\qquad...(4)
Similarly, linear momentum is associated with generalized coordinate q_k called generalized momentum p_k is given by
p_k=\frac{∂T}{∂\dot{q_k}}\qquad...(5)
First we derive the expression for K.E. (T) for a system of N-particles in terms of generalized velocities \dot{q_k}. K.E. of the system of N-particles free from constraints is
T=\sum\limits_{i=1}^{N}\frac{1}{2}m_i {v_i}^2=\sum\limits_{i=1}^{N}\frac{1}{2}m_i \dot{r_i}^2
T=\sum\limits_{i=1}^{N}\frac{1}{2}m_i (\dot{\overrightarrow{r_i}}.\dot{\overrightarrow{r_i}})\qquad...(6)
Now,
\dot{\overrightarrow{r_i}}=\sum\limits_{j=1}^{3N}\frac{∂\overrightarrow{r_i}}{∂q_j}\dot{q_j}+\frac{∂\overrightarrow{r_i}}{∂t}\qquad...(7)
Using (7) and (6),
T=\sum\limits_{i=1}^{N}\frac{1}{2}m_i \left[\sum\limits_{j=1}^{3N}\frac{∂\overrightarrow{r_i}}{∂q_j}\dot{q_j}+\frac{∂\overrightarrow{r_i}}{∂t}\right].\left[\sum\limits_{j=1}^{3N}\frac{∂\overrightarrow{r_i}}{∂q_j}\dot{q_j}+\frac{∂\overrightarrow{r_i}}{∂t}\right]
Great goods from you, man. I have understand your stuff previous to and you’re just extremely fantastic.
I really like what you’ve acquired here, certainly like what you’re saying and the way in which you say it.
You make it entertaining and you still take care of to keep it sensible.
I cant wait to read far more from you. This is really a terrific web
site.
Feel free to surf to my homepage – nordvpn coupons inspiresensation (url.hys.cz)
350fairfax nordvpn
great issues altogether, you simply gained a new reader.
What may you suggest in regards to your post that you simply made some days ago?
Any positive?
Here is my homepage :: nord vpn coupon codes