GENERALIZED COORDINATES

The minimum number of independent coordinates or variables which is required to
describe the motion of a dynamical system is known as generalized coordinates.

For a system of N particles and for k constraints and d dimension, the number of
independent coordinates (f) = d/N — k. These ‘I number of minimum independent
coordinates required to describe configuration and motion of a mechanical system are
called generalized coordinates and are denoted by g; (i = 1,2,3, ..., [ ).

Degree of Freedom: The minimum number of generalized coordinates required to
completely describe the configuration of the system is called degree of freedom.
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Generalized coordinates can be set of parameters that equivalently specify a point in
space.

We can express cartesian coordinates 7; in terms of generalized coordinates in the form
U 7ﬂi(qlr 42,93, -, er t)

SIMPLE PENDULUM

A consists of a point mass called bob suspended
at the lower end of a massless and inextensible string of
fixed at i1ts upper end to a fixed rigid support.

Here, No. of free particles (N) = 1

No. of constraints (k) = 2

15t constraint = length of the string is constant

2"d constraint = the bob moves in a plane

Generalized Coordinates=3N-k=3.1-2=1

<. Generalized Coordinate Is given by 6.

__________



Advantages of Generalized Coordinates:

Generalized coordinates are to Cartesian coordinates. They allow for the use
of that may be more suitable for describing the
configuration of a specific system.

Generalized coordinates provide a natural and convenient way In

classical mechanics. By utilizing appropriate generalized coordinates, the constraints
can be expressed as equations, simplifying the analysis and allowing for the
Incorporation of constraints directly into the :
Generalized coordinates enable a representation of complex
systems. By appropriately choosing the generalized coordinates, the degrees of freedom
and independent variables necessary to describe the system can be significantly
reduced.
Generalized coordinates are closely tied to the concept of

In classical mechanics. The Lagrangian function, which is expressed in
terms of generalized coordinates and their derivatives, simplifies the derivation of
equations of motion using the principle of least action, providing a powerful and
systematic approach In classical mechanics.



Generalized coordinates allow for system-specific descriptions that are tailored to the

and of the system under study.
Many physical systems naturally possess non-Cartesian characteristics. Using
generalized coordinates allows for a seamless between

, facilitating the analysis and understanding of systems with curved or non-
rectangular geometries.



EULER’S THEOREM
If £(7) = f(x,vy,z) then we have,

df =g—£dx+g—§dy+%dz

m,w=%&+%w+%&

Let us consider in three dimensional
coordinate system, then we have

No. of particle = 1

No. of constraint = 0

Degree of freedom (f) =3N-k=3.1-0=3
Generalized coordinates are (g4, g2, q3)-

For no. of particles with k constraints the
generalized coordinates are (g1, 92, 43, -+, qr)-




GENERALIZED DISPLACEMENT

Let us consider a for which a small displacement 67; is defined by
change in position coordinates 7;(i = 1,2,, ..., N) with time (t) kept as constant. The
position vector 7; of the i"* particle in the form of generalized coordinates can be written

as — —
1 =11(91,92, -, 95, t)

Using Euler’s theorem "t
o= Tise v Mg 4. 00 I sq g,
044 dq; 661 at
5= Tisg + Pis +a—r5qf ‘
0611 aq; aqy . 0 g
—> 6T = 07 LIy
aq] J

Jj=
where 6q; represents



GENERALIZED VELOCITY

Let us consider a dynamical system at comprised of

Let each particle be specified by the n generalized coordinates q4, g5, g3, .-, 4. Then the
time derivative of the generalized coordinates q;(j = 1,2,3, ..., n) is called the

which is denoted by ;.
The position vector 7; of the i"* particle in the form of generalized coordinates and time (t)

can be written as
: i = 11(q1, 92, - 4> t)
Using Euler’s theorem

d"—a?"d +aﬁd + +aﬁd +aﬁdt
1y = aql q1 aqz dz aqf qf at
dri 0rjdq, 01;dq; or; dqy Or;dt

=20 T O bz o, di "+aqf dt ' ot dt



dri 0drjdq; 01 dq;

~~dt g, dt | 9g, dt
—  —
£,9q; de " o
o iai- . o%
=> p = .q] —
— aq; dt

where q; is called generalized velocity.

dqr dt ' ot



GENERALIZED ACCELERATION

Let us consider a dynamical system at comprised of

Let each particle be specified by the n generalized coordinates q4, g5, g3, .-, 4. Then the
time derivative of the generalized velocity ¢;(j = 1,2,3, ...,n) Is called the

which is denoted by g;.

The velocity of the it" particle in the form of generalized coordinates and time (t) can be
written as

f = —
, o dr; . 0
B=7i= ) — g+ @
— aqk ot
Differentiating both sides w.r.t. we get




l
dt | £ 9q) dt | ot
iarﬁ . +iaﬁ .o

= Ak Ak T 57 (2)
k=1aqk k=1aCIk dt
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‘ aqy | 4 aq, oy T aq,

_>%_ii 0% % .+zan . +Z PNir
=~ %= 2, L. ageaq, U T aqkatq" g, T ataq, T




GENERALIZED FORCE

Let us consider a with no constraints imposed on the system.

N

Leta forcez Fi be acting on the system causing an arbitrary small
i=1

displacement 67; of the system by doing work ST which is given by

N
SW = 2 o (1)
i=1
3N 97
We have, - T
61 = 6_1an )
qj



Using (2) in (1) we get,

SW zF zaﬁ(s
= i A qj
i=1 j=1aq1

3N
> 5W = ) ;.8q;
=1

where Q; is called generalized force.




GENERALIZED MOMENTUM

Let us consider a

The K.E. T of the it" particle having mass m; and velocity v; of a system is given by

= 1‘m-vz
2 ™1
-t (d_)
2 '\ dt
=>T = 1m X
2 MiXi
Differentiating equation (1) partially w.r.t. x; we get,
or 1

i —min'i = mix'l-
axi 2

with no constraints imposed on the system.

1)

2)



Linear momentum p; of the particle is given by

pPi = m;v;
dx,;
=>p; =m; dt
Comparing (2) and (3) we get, oT
p= 4)
Xi

Similarly, linear momentum Is associated with generalized coordinate g; called
generalized momentum pj, IS given by

aT
Pr = @ (5)



First we derive the expression for K.E. (T) for a system of In terms of
generalized velocities g;. K.E. of system of N-particles free from constraints is

N N

1, 1, dry _
T = Emivi = Emirl- Vi = E =1
= =
N
1 s 4
=T = szi(ri.ri) (6)
i=1
Mo - S or; . _I_aFi)
= £, 9q; CRRFT: (7)
Using (7) and (6), =
N 3N __, o] [3v -
T zl ar; +6rl ar; ar;
= 5 M qj T dx T 3,
1212 - aq; ot — aq;, dt



N 3N 3N N 3N

7;‘71 ar ar +ZZ 07”1 a’”z :

i=1j=1k=1 i=1j=
N 3N
+zzl or; or; +Z 07’1
2™t ag, T a2\ B
i=1k=
N 3N 3N N 3N
7;‘71 or; 0Ty . dr; Or; | N arl
= m; —— CI]CIk zzml =, 4k Z m;
i=1 j=1k=1 aqaCIk =1 k= akat :

Differentiating partially w.r.t. g,

ZZ or; 0T, +i o7, OF;
aqk 2 "9, aq; aqk A "; dq; Ot which is the
=1

< :
i=1j= generalized momentum.




GENERALIZED POTENTIAL

\When the system Is conservative: In this case the force acting on the system can be
expressed as gradient of scalar potential function V I.e.

F=—-VV (1)

The work done by the force on the system during an arbitrary displacement 87; of the
system is

N
SW = z F;. 877 2)
i=

Using (1) in (2) we get,



= i i A V.(6x;8 + 8yif + 6z;k)
— . laxi J ay aZi . Xil Vil Zj

- i 5+ 205 1 OV (5,8 + By + 62
= axil ayi] 9z ) Xil Yil Zj




In terms of generalized coordinate g; we have,

3N 3N
av av
=3 (o) = ow=3 (-

3N
=> oW = 2 oep
k=1

where Q; = —;TV represents the generalized force as workdone is the product of force
k

and displacement. Here V is called for a conservative system.



When the system Is non-conservative: In this case the system depends on generalized
velocities g; besides g;.

In this case the generalized force can be expressed as

_ U _dfov
= dq;  dt\ag;

where U = U(q;,q;) Is called velocity dependent for a non-
conservative system.
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