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Normal Lines:
The normal line at point P to the given curve is a line perpendicular to the tangent
at point P to the curve. Obviously for a three–dimensional space curve there will
be an infinite number of such normal lines.
Let a space curve be given by

r⃗ = r⃗(t),

and let P be the point on the curve corresponding to the parameter value t = t0.

The tangent vector to the curve at the point P is

r⃗ ′(t0) =
dr⃗

dt

∣∣∣∣
t=t0

.

This vector determines the direction of the tangent line at P .
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A normal line at the point P is defined as a line passing through P whose direction
is perpendicular to the tangent at P . If a⃗ is the direction vector of such a line, then

a⃗ · r⃗ ′(t0) = 0.

In two dimensions, there is only one direction perpendicular to a given tangent, so
the normal line is unique.
In three–dimensional space, all vectors perpendicular to the tangent vector r⃗ ′(t0)
lie in a plane perpendicular to the tangent at P . Since this plane contains infinitely
many directions, there exist infinitely many vectors a⃗ satisfying the condition

a⃗ · r⃗ ′(t0) = 0.
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Hence, for a three–dimensional space curve, there are infinitely many normal lines
at a given point P .
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Normal plane:
The normal plane at point P to the given curve is the plane passing through the
point P and perpendicular to the tangent at P .
Thus we can say that the normal plane at point P on the space curve and let R⃗ be
the position vector of any current point on the normal plane at P , then the vector
(R⃗− r⃗) lies in the plane. Since the vector r⃗ is perpendicular to this plane, we have

(R⃗− r⃗) · ˙⃗r = 0 (1)

which is the equation of the normal plane at point P .
Again the equation (1) can be put in the form

(R⃗− r⃗) · t̂ = 0 (2)
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Cartesian Equivalent
Let

R⃗ = Xî+ Y ĵ + Zk̂, r⃗ = xî+ yĵ + zk̂

r̂ = ẋî+ ẏĵ + żk̂

Putting these in (1), we get

[(X − x)̂i+ (Y − y)ĵ + (Z − z)k̂] · [ẋî+ ẏĵ + żk̂] = 0

or,
(X − x)ẋ+ (Y − y)ẏ + (Z − z)ż = 0

Or, all the normals, two normals are of special significance. These are known as
Principal normal and Binormal, which are defined below.
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Principal Normal
The normal lying in the osculating plane at a point P on the space curve is called
the principal normal at point P .
Thus we can say that the principal normal at any point P to a given curve is the
line of intersection of the normal plane at P and the osculating plane at P . We shall
denote the unit vector along the principal normal by n̂.

Binormal
The normal perpendicular to the principal normal at point P is called binormal at
point P .
Thus we can say that the binormal at any point P is the line perpendicular to the
osculating plane at P . The unit vector along the binormal is denoted by b̂ and we
choose the sense of b̂ in such a manner that the triad t̂, n̂, b̂ form a right–handed
system, i.e.,

b̂ = t̂× n̂.
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Directions of Principal Normal and Binormal
Since the binormal is perpendicular to the osculating plane, therefore it must be
parallel to the vector ˙⃗r × ¨⃗r.
In case the general parameter t is replaced by the arc parameter s, then ˙⃗r =
r⃗ ′, ¨⃗r = r⃗ ′′, thus the binormal is parallel to the vector r⃗ ′ × r⃗ ′′.
Again the principal normal is perpendicular to both the tangent and binormal and
therefore it must be parallel to the vector

( ˙⃗r × ¨⃗r)× ˙⃗r,

i.e., parallel to the vector
( ˙⃗r2)¨⃗r − ( ˙⃗r · ¨⃗r) ˙⃗r.

In case the parameter is s, then

˙⃗r2 = r⃗ ′2 = 1,
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thus on differentiating,
˙⃗r · ¨⃗r = r⃗ ′ · r⃗ ′′ = 0.

Consequently the principal normal is parallel to r⃗′′.

Rectifying Plane
The plane containing the tangent and binor-
mal at P is called the rectifying plane at P ,
i.e., it is the plane passing through P and
perpendicular to the principal normal at P .
Evidently the equation of this plane is

(R⃗− r⃗) · n̂ = 0
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Orthonormal Triad of Fundamental Unit Vectors t̂, n̂, b̂

We have defined a set of three mutually perpendicular unit vectors t̂, n̂, b̂ associated
with each point of a curve. This set of unit orthonormal triad forms a moving
trihedral at point P (say) such that

t̂ · n̂ = 0, n̂ · b̂ = 0, b̂ · t̂ = 0,

n̂× b̂ = t̂, b̂× t̂ = n̂, t̂× n̂ = b̂.

The vectors t̂, n̂, b̂ are called fundamental unit vectors.

Fundamental Planes
The three planes, osculating plane, normal plane and rectifying plane associated
with each point of a curve are called fundamental planes. These planes are mutually
perpendicular and are determined by the moving trihedral t̂, n̂, b̂ at the point.
The equations of fundamental planes are:
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Osculating plane:
It contains t̂ and n̂ and is normal to b̂, its equation is

(R⃗− r⃗) · b̂ = 0.

Normal plane:
It contains n̂ and b̂ and is normal to t̂, its equation is

(R⃗− r⃗) · t̂ = 0.

Rectifying plane:
It contains b̂ and t̂ and is normal to n̂, its equation is

(R⃗− r⃗) · n̂ = 0.
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Equation of the Principal Normal and Binormal
Let r⃗ be the position vector of any point P on the given curve C. Let R⃗ be
the position vector of a current point R on the principal normal, then we have−−→
OP = r⃗,

−−→
OR = R⃗ and

−→
PR = λn̂, since n̂ is

the unit vector along the principal normal
and λ is some scalar.
By triangle law of vectors, we have

−−→
OR =

−−→
OP +

−→
PR ⇒ R⃗ = r⃗ + λn̂,

which is the required equation of the princi-
pal normal.
Similarly if R⃗ is the position vector of a cur-
rent point Q on the binormal, then the equa-
tion of binormal is given by

R⃗ = r⃗ + µb̂, where µ is a scalar.
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Curvature:
The curvature at a point P of a given curve is the arc rate of rotation of the tangent
(i.e., change in the direction of tangent) at P . Its magnitude is denoted by κ (kappa).

To find an expression for the curvature (κ) at a given point P of a given
curve:
Let Q be a point very near to P on
the curve. Arc PQ is δs and let the di-
rection of tangent at Q makes an angle
δθ with the direction of tangent at P .
Again the unit tangent vector is not con-
stant vector, since its direction changes
from point to point.
Let t and t+ δt be its values at P and Q
respectively.

If
−−→
QM = t and

−−→
QN = t + δt, then we

have
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−−→
MN = δt, ∠MQN = δθ and |

−−→
QM | = |

−−→
QN | = 1

From the isosceles triangle QMN , we have

MN = 2QM sin

(
1

2
δθ

)
= 2 sin

(
1

2
δθ

)

⇒ |δt⃗| = 2 sin

(
1

2
δθ

)

⇒
∣∣∣∣ δtδθ

∣∣∣∣ = sin
(
1
2δθ

)
1
2δθ

Taking limits, ∣∣∣∣ dtdθ
∣∣∣∣ = 1 (1)
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∴ Curvature at P ,

κ = lim
δs→0

δθ

δs
=

dθ

ds
along the direction of the tangent.

κ =
dθ

|dt|
|dt|
ds

=

∣∣∣∣dθdt
∣∣∣∣ ∣∣∣∣ dtds

∣∣∣∣ = ∣∣∣∣ dtds
∣∣∣∣ = ∣∣∣∣dr⃗ ′

ds

∣∣∣∣ = |r⃗ ′′| [Using (1)]

which implies that the curvature is the scalar measure of the arc rate of turning of
the unit vector t. The reciprocal of κ, i.e., 1

κ , is called the radius of curvature and
is denoted by ρ.

Deduction:
|r⃗ ′| = 1 r⃗ ′2 = 1

Differentiating, we get
2r⃗ ′ · r⃗ ′′ = 0,
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i.e., r⃗ ′′ is perpendicular to r⃗ ′, i.e., to t.
But r⃗ ′′ at P lies in the osculating plane at P , or r⃗ ′′ is a vector in the osculating
plane perpendicular to t, implying that r⃗ ′′ is collinear with n̂.
Also |r⃗ ′′| = κ, so we have r⃗ ′′ = ±κn̂.
We choose the direction of n̂ such that curvature κ is always positive, i.e., we take

r⃗ ′′ = κn̂ or
dt

ds
= κn̂

Theorem. A necessary and sufficient condition for the curve to be a straight line
is that the curvature κ = 0 at all points of the curve.

Proof. The equation of a straight line in vector form is given by

r⃗ = sa⃗+ b⃗,

where a⃗ and b⃗ are constant vectors.
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Hence,
t⃗ = r⃗ ′ = a⃗ and t⃗ ′ = r⃗ ′′ = 0

κ =
∣∣r′′∣∣ = 0

i.e., if the curve is a straight line, then κ = 0, i.e., κ = 0 is a necessary condition for
a curve to be a straight line.
Converse. In case κ = 0 for all points on the curve, then

r⃗ ′′ = 0 (1)

Integrating we get, r⃗ ′ = a⃗.
Again on integration,

r⃗ = a⃗s+ b⃗. (2)

where a⃗ and b⃗ are arbitrary constant vectors. The equation (2) represents a
straight line for all values of a⃗ and b⃗. Hence the curve is a straight line.
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Torsion:
Torsion at point P of a given curve is the arc rate of the change in the direction of
the binormal at P . Its magnitude is denoted by τ .

To find an expression for the torsion at a point P of a given curve:

Let Q be a point contiguous to P on the curve. Arc
PQ = δs, b̂ and b̂ + δb̂ are the unit binormal vectors
at P and Q respectively and δθ is the angle between b̂
and b̂+ δb̂.
Let, −−→

QR = b̂,
−→
QS = b̂+ δb̂,

then −→
RS = δb̂.

Now from the isosceles triangle QRS, we have
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RS = 2QR sin
1

2
δθ

⇒ |
−→
RS| = 2|

−−→
QR| sin 1

2
δθ

⇒ |δb̂| = 2 sin
1

2
δθ ∵ |

−−→
QR| = 1

⇒ |δb̂|
|δθ|

= 2
sin 1

2δθ

δθ

⇒ |δb̂|
|δθ|

=
sin 1

2δθ
1
2δθ
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Taking limits as δθ → 0,

lim
δθ→0

|δb̂|
|δθ|

= lim
δθ→0

sin 1
2δθ

1
2δθ

⇒

∣∣∣∣∣db̂dθ
∣∣∣∣∣ = 1

Thus, by definition, torsion at P is

τ = lim
δs→0

δθ

δs
=

dθ

ds

τ =
dθ

|db̂|
|db̂|
ds

=

∣∣∣∣dθdb̂
∣∣∣∣
∣∣∣∣∣db̂ds

∣∣∣∣∣ =
∣∣∣∣∣db̂ds

∣∣∣∣∣ = |b̂ ′|
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Hence,
τ = |b̂ ′|.

Thus τ is the scalar measure of the arc rate of the unit vector b⃗. The reciprocal of

the torsion is called the radius of torsion and is denoted by σ and σ = 1
τ .

Deduction: We have t̂ · b̂ = 0.
On differentiating,

t̂ · b̂′ + t̂′ · b̂ = 0

⇒ t̂ · b̂′ + κn̂ · b̂ = 0 [∵ t̂′ = κn̂]

⇒ t̂ · b̂′ = 0 [∵ n̂ · b̂ = 0]

⇒ b̂ is perpendicular to t̂

Further,
b̂ · b̂ = 1 ⇒ 2 b̂ · b̂′ = 0 ⇒ b̂′ is perpendicular to b̂
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Thus b̂′ is normal to the plane containing t̂ and b̂, i.e., to the rectifying plane. Hence
b̂′ is collinear with n̂.
Thus

b̂′ = ±τ n̂

Since the triad (t̂, n̂, b̂) forms a right–handed orthonormal system, the negative sign
is taken, i.e.,

b̂′ = −τ n̂ or
db̂

ds
= −τ n̂.

Theorem: A necessary and sufficient condition that a given curve is a plane curve
is that τ = 0 at all points.

Proof. Let the curve be a plane curve. Then the tangent and normal at all points
of the curve lie in the plane of the curve, i.e., the plane of the curve is the osculating
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plane at all points. This implies that the unit vector b̂ along the binormal is constant.
Hence

db̂

ds
= 0 or τ = 0.

Hence the condition is necessary.

Converse. Let τ = 0 at all points of the curve. This implies that

db̂

ds
= 0,

i.e., b̂ is a constant vector.
Again,

d

ds
(r⃗ · b̂) = dr⃗

ds
· b̂+ r⃗ · db̂

ds
= t̂ · b̂+ r⃗ · b̂′.

As t̂ and b̂ are orthogonal, we have t̂ · b̂ = 0. Also b̂′ = 0.
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Therefore,
d

ds
(r⃗ · b̂) = 0,

i.e., r⃗ · b̂ = constant.
Again, b̂ is a constant vector of unit magnitude; hence r⃗ · b̂ is the projection of the
position vector r⃗ on b̂ and is same at all points of the curve. This implies that the
curve must lie in a plane.

Screw-Curvature

The arc rate at which the principal normal changes direction
(
i.e.,

∣∣dn̂
ds

∣∣) is called
the screw curvature vector and its magnitude is given by√

κ2 + τ2.
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Serret–Frenet Formulae:
The following set of three relations involving space derivatives of fundamental unit
vectors t̂, n̂, b̂ are known as Serret–Frenet Formulae:

1.
dt̂

ds
= κn̂ 2.

dn̂

ds
= τ b̂− κt̂ 3.

db̂

ds
= −τ n̂

Serret–Frenet formulae can be represented in matrix form
as  t̂′

n̂′

b̂′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 t̂
n̂

b̂


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Curvature and Torsion of a Curve:

For a curve r⃗ = r⃗(t),

κ =
| ˙⃗r × ¨⃗r|
| ˙⃗r|3

, τ =
[ ˙⃗r, ¨⃗r,

...
r⃗ ]

| ˙⃗r × ¨⃗r|2

We know that,

˙⃗r =
dr⃗

dt
=

dr⃗

ds

ds

dt
= t̂

ds

dt
(1)

∴ | ˙⃗r| = ds

dt
= ṡ (2)

Differentiating again,

¨⃗r =
d

dt

(
t̂
ds

dt

)
=

dt̂

ds

(
ds

dt

)2

+ t̂
d2s

dt2
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Since dt̂
ds = κn̂, we get

¨⃗r = κn̂

(
ds

dt

)2

+ t̂
d2s

dt2
(3)

Taking the cross product of ˙⃗r and ¨⃗r,

˙⃗r × ¨⃗r = κ

(
ds

dt

)3

b̂

Hence,

| ˙⃗r × ¨⃗r| = κ

(
ds

dt

)3

(4)

Differentiating, we get

˙⃗r ×
...
r⃗ + ¨⃗r × ¨⃗r = ṡ 3κṡ b̂+ b̂

d

dt

(
ṡ 3κ

)
[∵ ˙̂

b = −τ n̂] (5)
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Again taking the scalar product of (3) and (5), we get

[ ˙⃗r, ¨⃗r,
...
r⃗ ] = −ṡ 6κ2τ (6)

Also from (2) and (4), we have

ṡ 3κ|b̂| = | ˙⃗r × ¨⃗r|

⇒ | ˙⃗r|3κ|ˆ⃗b| = | ˙⃗r × ¨⃗r|

⇒ κ =
| ˙⃗r × ¨⃗r|
| ˙⃗r|3

[∵ |b̂| = 1]

From (6) and (4), we have

τ =
[ ˙⃗r, ¨⃗r,

...
r⃗ ]

| ˙⃗r × ¨⃗r|2
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Q: Show that

κ = |r⃗ ′ × r⃗ ′′| and τ =
[r⃗ ′, r⃗ ′′, r⃗ ′′′]

|r⃗ ′ × r⃗ ′′|2

Proof: We know that r⃗ ′ = t̂ and r⃗ ′′ = κn̂

∴ r⃗ ′ × r⃗ ′′ = t̂× κn̂ = κb̂

or,
|r⃗ ′ × r⃗ ′′| = κ|b̂| = κ (1)

Again,
r⃗ ′ = t̂ = 1. t̂+ 0. n̂+ 0. b̂ (2)

r⃗ ′′ = κn̂ = 0. t̂+ κn̂+ 0. b̂ (3)
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r⃗ ′′′ = κ
dn̂

ds
+

dκ

ds
n̂ (2)

= κ(τ b̂− κt̂) + κ′n̂ (3)

= −κ2t̂+ κ′n̂+ κτ b̂ (4)

From (2), (3) and (4), we have

[r⃗ ′, r⃗ ′′, r⃗ ′′′] =

∣∣∣∣∣∣
1 0 0
0 κ 0

−κ2 κ′ κτ

∣∣∣∣∣∣
= κ2τ (5)

or,

τ =
[r⃗ ′, r⃗ ′′, r⃗ ′′′]

κ2
=

[r⃗ ′, r⃗ ′′, r⃗ ′′′]

|r⃗ ′ × r⃗ ′′|2
[∵ κ = |r⃗ ′ × r⃗ ′′|]
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Theorem: Show that the necessary and sufficient condition for the curve to be a
plane curve is [r⃗ ′, r⃗ ′′, r⃗ ′′′] = 0.

Proof: We have, [r⃗ ′, r⃗ ′′, r⃗ ′′′] = κ2τ .
In case [r⃗ ′, r⃗ ′′, r⃗ ′′′] = 0, then either κ = 0 or τ = 0.
Let, τ ̸= 0 at some point of the curve then in the neighbourhood of this point τ ̸= 0,
therefore κ = 0 in the neighbourhood of this point.
Hence the arc is a straight line and therefore τ = 0 on this line which contradicts
our hypothesis. Thus τ = 0 at all points and the curve is a plane.

Conversely if τ = 0 i.e., the curve is a plane curve then [r⃗ ′, r⃗ ′′, r⃗ ′′′] = 0.
Therefore the condition is necessary as well as sufficient.
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