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Order of Contact Between Curves and Surfaces:
Let us consider a curve C and surface S given by the following equations

x = f(t), y = g(t), z = h(t) (1)

F (x, y, z) = 0 (2)

The values of t corresponding to the points which are common to C and S are given
by the solution of the equation obtained from (1) and (2) on eliminating x, y, z, i.e.,
by

F [f(t), g(t), h(t)] = 0 or F (t) = 0 (3)

Let t0 be one of the solutions of (3), then

F (t0) = 0
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Now expanding F (t) about t0 by Taylor’s theorem in powers of (t− t0), we get

F (t) = F (t0) + (t− t0)F
′(t0) +

(t− t0)
2

2!
F ′′(t0) + · · ·

+
(t− t0)

n

n!
F (n)(t0) + · · ·

or,

F (t) = (t− t0)F
′(t0) +

(t− t0)
2

2!
F ′′(t0) + · · ·

+
(t− t0)

n

n!
F (n)(t0) + · · ·

[
∵ F (t0) = 0

]
Now the following different cases arise:

1. If F ′(t0) ̸= 0, then t0 is a simple zero of F (t) and in this case C and S are
said to have simple intersection.
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2. If F ′(t0) = 0 but F ′′(t0) ̸= 0, then t0 is a double zero of F (t) and the curve
C and surface S have two-point contact or contact of first order.

3. If F ′(t0) = F ′′(t0) = 0 but F ′′′(t0) ̸= 0, then t0 is a triple zero of F (t) and C
and S have three-point contact or contact of second order.

In general, if

F ′(t0) = F ′′(t0) = · · · = F (r)(t0) = 0, but F (r+1)(t0) ̸= 0,

then C and S are said to have (r + 1)-point contact or contact of rth order.

Dr. Rajshekhar Roy Baruah Space Curves February 4, 2026 3 / 16



Ex.1. Prove that if the circle

lx+my + nz = 0, x2 + y2 + z2 = 2cz

has three point contact at the origin with the paraboloid

ax2 + by2 = 2z,

then

c =
l2 +m2

bl2 + am2
.

Solution: Equation of the circle are

lx+my + nz = 0 (1)

x2 + y2 + z2 = 2cz (2)
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Differentiating these equations w.r.t. the parameter t, we get

lẋ+mẏ + nż = 0 (3)

xẋ+ yẏ + zż = cż (4)

At the origin x = 0, y = 0, z = 0, the equations (3) and (4) reduce to

lẋ+mẏ = 0 and ż = 0

ẋ

m
= − ẏ

l
= λ (say) (5)

Differentiating (4) again, we get

ẋ2 + xẍ+ ẏ2 + yÿ + ż2 + zz̈ = cz̈

At the origin this reduces to
ẋ2 + ẏ2 = cz̈ (6)
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Again, equation of the paraboloid is

ax2 + by2 − 2z = 0

In order that the paraboloid may have a three point contact with the circle, we must
have

2aẋ2 + 2bẏ2 − 2ż = 0 (7)

and
2aẋ2 + 2axẍ+ 2bẏ2 + 2byÿ − 2z̈ = 0 (8)

At the origin equation (8) reduces to

aẋ2 + bẏ2 = z̈ (9)

From (6) and (9) on eliminating z̈, we get

c =
ẋ2 + ẏ2

aẋ2 + bẏ2
=

m2 + l2

am2 + bl2
, [From (5), ẋ = mλ, ẏ = −lλ]
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Figure 1: Three-point contact of Sphere, Paraboloid and Plane at the Origin
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Ex.2. Find the equation of the plane that has three point contact at the origin with
the curve

x = t4 − 1, y = t3 − 1, z = t2 − 1.

Solution: The equation of any plane through the origin is

ax+ by + cz = 0 (1)

The equations of the given curve are

x = t4 − 1, y = t3 − 1, z = t2 − 1 (2)

Eliminating x, y, z from (1) and (2), we obtain

F (t) = a(t4 − 1) + b(t3 − 1) + c(t2 − 1) = 0

Therefore,
F ′(t) = 4at3 + 3bt2 + 2ct,
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F ′′(t) = 12at2 + 6bt+ 2c

The origin means
(x, y, z) = (0, 0, 0)

Setting each coordinate equal to zero, we get

t4 − 1 = 0 ⇒ t4 = 1

t3 − 1 = 0 ⇒ t3 = 1

t2 − 1 = 0 ⇒ t2 = 1

The only common solution of all three equations is t = 1.
Since the plane has three point contact with the curve at the origin, i.e., at t = 1,
we have

F ′(1) = 4a+ 3b+ 2c = 0,

F ′′(1) = 12a+ 6b+ 2c = 0
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Solving these equations, we get

a

6− 12
=

b

24− 8
=

c

24− 36
,

or
a

3
=

b

−8
=

c

6

Hence, the required plane is

3x− 8y + 6z = 0

Three-Point Contact of Curve with Plane 3x − 8y + 6z = 0
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Ex.3. Show that the condition that four consecutive points of a curve should be
coplanar is ∣∣∣∣∣∣

x′ y′ z′

x′′ y′′ z′′

x′′′ y′′′ z′′′

∣∣∣∣∣∣ = 0.

Solution: Let us take parametric equations of the curve as follows:

x = f(t), y = g(t), z = h(t). (1)

Again, the equation of the plane through a point (x, y, z) on the curve is given by

(X − x)l + (Y − y)m+ (Z − z)n = 0. (2)

The plane (2) will pass through four consecutive points if it has three-point contact
with the curve, i.e.,

F (t0) = F ′(t0) = F ′′(t0) = F ′′′(t0) = 0
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The equation of the plane through the point corresponding to t = t0 is

(X − x(t0))l + (Y − y(t0))m+ (Z − z(t0))n = 0

Substituting a general point of the curve

X = x(t), Y = y(t), Z = z(t),

we define
F (t) = [x(t)− x(t0)]l + [y(t)− y(t0)]m+ [z(t)− z(t0)]n

Putting t = t0, we get

F (t0) = [x(t0)− x(t0)]l + [y(t0)− y(t0)]m+ [z(t0)− z(t0)]n = 0

Thus the plane passes through the point corresponding to t0.
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Differentiating F (t) with respect to t,

F ′(t) = x′(t)l + y′(t)m+ z′(t)n

Evaluating at t = t0,
F ′(t0) = x′l + y′m+ z′n = 0 (3)

Differentiating again,

F ′′(t) = x′′(t)l + y′′(t)m+ z′′(t)n

At t = t0,
F ′′(t0) = x′′l + y′′m+ z′′n = 0 (4)

Differentiating once more,

F ′′′(t) = x′′′(t)l + y′′′(t)m+ z′′′(t)n
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At t = t0,
F ′′′(t0) = x′′′l + y′′′m+ z′′′n = 0 (5)

From the conditions

F (t0) = F ′(t0) = F ′′(t0) = F ′′′(t0) = 0,

Thus from equations (3), (4), and (5) we have,

x′l + y′m+ z′n = 0 (6)

x′′l + y′′m+ z′′n = 0 (7)

x′′′l + y′′′m+ z′′′n = 0. (8)

Here, dashes denote differentiation with respect to t.
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Now, eliminating l,m, n from equations (6), (7), and (8), we obtain∣∣∣∣∣∣
x′ y′ z′

x′′ y′′ z′′

x′′′ y′′′ z′′′

∣∣∣∣∣∣ = 0.

Hence proved.
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THANK YOU
Vist the website for notes

https://mathematicalexplorations.co.in
Subscribe to my YouTube Channel
Mathematical Explorations
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