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Order of Contact Between Curves and Surfaces:
Let us consider a curve C' and surface S given by the following equations

z=f(t), y=4g@1), z=h() (1)
F(x7y7 Z) =0 (2)

The values of ¢ corresponding to the points which are common to C' and S are given
by the solution of the equation obtained from (1) and (2) on eliminating x, y, z, i.e.,
by

Flf(t),9(t),h(t)] =0 or F(t)=0 ©))

Let to be one of the solutions of (3), then

F(tg) =0
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Now expanding F'(t) about to by Taylor’s theorem in powers of (t —tg), we get

F(&) = Flto) + (¢ — t0)F'(t0) + L2 P(gg) 4.

A
+ (t_nfo)np(n)(to) 4.
F(t) = (t —to)F'(to) + (t_z!tD)ZF”(tO) L

Now the following different cases arise:

If F'(tg) # 0, then ¢y is a simple zero of F(t) and in this case C and S are
said to have simple intersection.
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If F'(to) = 0 but F”(ty) # 0, then ¢y is a double zero of F(¢) and the curve
C and surface S have two-point contact or contact of first order.

If F'(tg) = F"(to) = 0 but F"(ty) # 0, then ¢y is a triple zero of F(t) and C
and S have three-point contact or contact of second order.

In general, if
F'tg) = F"(to) =--- = F(tg) =0, but FT(tg) # 0,

then C and S are said to have (r + 1)-point contact or contact of rth order.
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Ex.1. Prove that if the circle
lx +my +nz =0, 2 + 9% + 2% = 2z

has three point contact at the origin with the paraboloid

az? + by? = 2z,
then
12 4+ m?
cC= ———.
bl% + am?

Solution: Equation of the circle are

lx+my+nz=0 (1)
2+ 9% + 2% = 2z @)
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Differentiating these equations w.r.t. the parameter ¢, we get

lz+my+nz=0 (3)
T+ Yy + 2z =cz (4)

At the origin z = 0,y = 0, z = 0, the equations (3) and (4) reduce to

lt+my=0 and 2=0

T Y
L Yoy 5
e 6
Differentiating (4) again, we get

Pt ai iyt =c3

At the origin this reduces to

P+ =ck ©)
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Again, equation of the paraboloid is

ar’? + by’ —22=0

In order that the paraboloid may have a three point contact with the circle, we must

have
2042 4 202 — 22 =0

and
2a%° + 2axi + 2by* + 2byij — 25 = 0

At the origin equation (8) reduces to
ai? +by? =2
From (6) and (9) on eliminating %, we get

2 + 9 m? + 2 . :
€= oy b amZ O [From (5), & = mA, § = —I)]
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Ex.2. Find the equation of the plane that has three point contact at the origin with

the curve
r=t*"—1, y=t3-1, z=t>-1.

Solution: The equation of any plane through the origin is
ar+by+cz=0 (1)
The equations of the given curve are
z=tt—-1 y=t3-1, z=t*-1 (2)
Eliminating x,y, z from (1) and (2), we obtain
F(t)=a(t* — 1)+ bt —1) +c(t* — 1) =0

Therefore,

F'(t) = 4at® + 3bt* + 2ct,
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L
F'(t) = 12at* + 6bt + 2¢

The origin means
(‘T7 y7 z) — (07 07 0)

Setting each coordinate equal to zero, we get
th—-1=0= t'=1
th-1=0= =1
t?-1=0=t*=1

The only common solution of all three equations is t = 1.
Since the plane has three point contact with the curve at the origin, i.e., at t = 1,
we have

F'(1) =4a+3b+2c =0,
F"(1) =12a+6b+2c=0
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= Given Curve
—=— Tangent Line at t=1

Solving these equations, we get

a b _ C
6—12 24—8 24—36’

or
a b

_ 2 _ ¢
3 -8 6

Hence, the required plane is

3z —8y+6z2=0
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Ex.3. Show that the condition that four consecutive points of a curve should be
coplanar is

L Y
z’ "l — o
gyt

z=f(t), y=g@1), z=nh(). (1)
Again, the equation of the plane through a point (z,y, z) on the curve is given by
(X —2)+ Y —ym+(Z—-2n=0. (2)

The plane (2) will pass through four consecutive points if it has three-point contact
with the curve, i.e.,

F(to) = F'(to) = F"(to) = F"'(to) = 0
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The equation of the plane through the point corresponding to t = t is
(X = 2(to))l + (¥ — y(to))m + (Z — 2(to))n = 0
Substituting a general point of the curve
X =a(t), Y=ylt), Z==(@),

we define
F(t) = [z(t) — z(to)]l + [y(¢) — y(to)lm + [2(¢) — z(to)]n
Putting t = tg, we get
F(to) = [x(to) — (to)]l + [y(to) — y(to)lm + [2(t0) — 2(to)In =0

Thus the plane passes through the point corresponding to tp.
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Differentiating F'(t) with respect to t,
F't)y=2"t)l+y t)m+ 2 (t)n

Evaluating at ¢t = ¢,
F'(to) =2'l+ym+2n=0

Differentiating again,
F'(t)=2"()l +y"(t)m + 2" (t)n

At t = to,
F'(to) =2"l+y"m+2"n=0

Differentiating once more,
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At t = ty,
F"(to) = 2" +¢""m + 2"'n = 0 (5)

From the conditions
F(ty) = F'(to) = F"(to) = F"'(to) = 0,

Thus from equations (3), (4), and (5) we have,

rl+ym+2Zn=0 (6)
2"+ o"'m + 2"n = 0 (7)
w///l + y///m + Z///n _ O. (8)

Here, dashes denote differentiation with respect to t.
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Now, eliminating [, m,n from equations (6), (7), and (8), we obtain

/ ! /
oy
/! /! 7
y =0
" 4 "
y

Hence proved.
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THANK YOU

Vist the website for notes
https://mathematicalexplorations.co.in
Subscribe to my YouTube Channel
Mathematical Explorations

1ekhar Roy Baruah Space Curves February 4, 2026 16 /16


https://mathematicalexplorations.co.in/

