

Space Curves - Differential Geometry

Presented by

Dr. Rajshekhar Roy Baruah
Assistant Professor
Department of Mathematical Sciences

DEPARTMENT OF MATHEMATICAL SCIENCES
BODOLAND UNIVERSITY, KOKRAJHAR

Space Curves

Space Curve: A **space curve** is a curve that lies in three-dimensional space and is represented by using a vector-valued function

$$\vec{r}(t) = x(t) \hat{i} + y(t) \hat{j} + z(t) \hat{k},$$

where

- t is a parameter (often time or any real variable).
- $x(t)$, $y(t)$, and $z(t)$ are coordinate functions.

e.g.

Helix:

$$\vec{r}(t) = (\cos t, \sin t, t)$$

Straight line:

$$\vec{r}(t) = \vec{a} + t \vec{b}$$

Circle in space:

$$\vec{r}(t) = (a \cos t, a \sin t, 0)$$

Space Curves

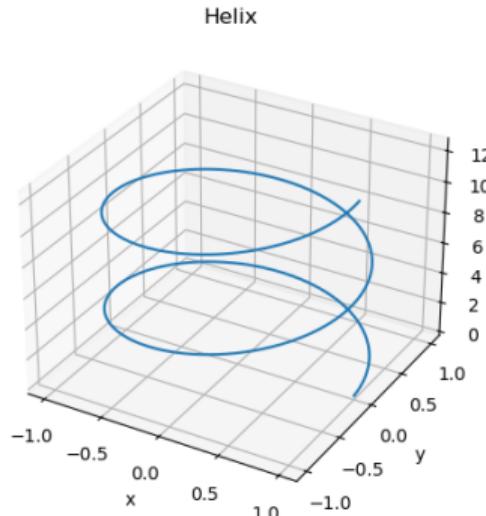


Figure 1: Helix

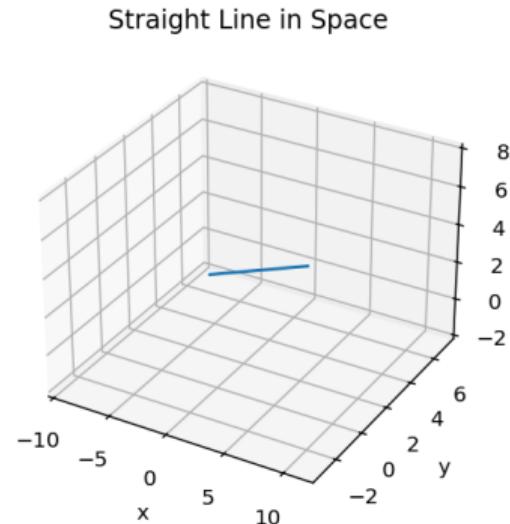


Figure 2: Straight Line

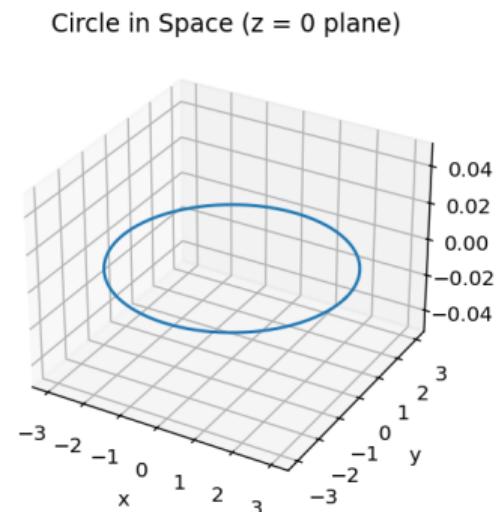


Figure 3: Circle

Space Curves

- The curve is known as *plane curve* if it lies on a plane, otherwise it is said to be a *skew* or *twisted* or *tortuous curve*.
- Unlike a plane curve (2D), a space curve moves freely in three-dimensional space.
- The parametric equations of a curve are: $x = x(t)$, $y = y(t)$, $z = z(t)$, where x, y, z are real valued functions of a single real parameter t ranging over a set of values $a \leq t \leq b$.
- A space curve may also be given as the intersection of two surfaces whose equations are

$$f_1(x, y, z) = 0 \quad \text{and} \quad f_2(x, y, z) = 0, \quad \text{then}$$

$$f_1(x, y, z) = 0; \quad f_2(x, y, z) = 0$$

Space Curves

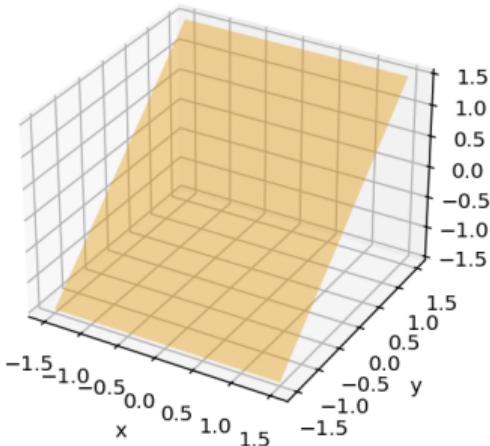


Figure 4: Plane: $z = y$

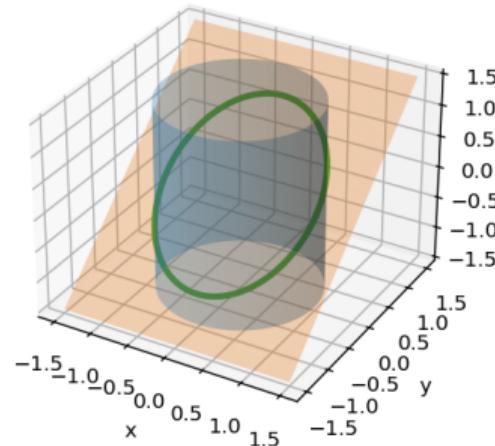


Figure 5: Intersection of two surfaces

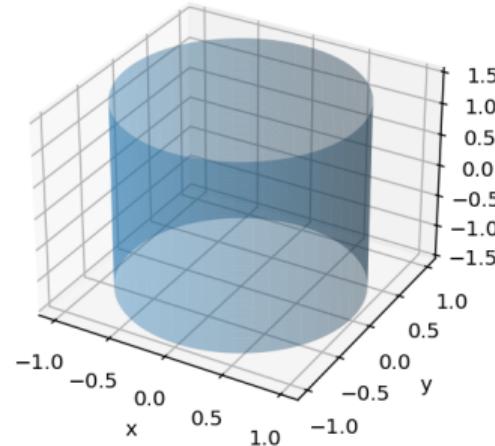


Figure 6: Cylinder: $x^2 + y^2 = 1$

Space Curves

Arc Length of a Space Curve: The **arc length** is the actual length of the curve between two points. For a space curve $\vec{r}(t)$, the arc length from $t = a$ to $t = b$ is given by

$$S = \int_a^b \left| \frac{d\vec{r}}{dt} \right| dt$$

where

$$\left| \frac{d\vec{r}}{dt} \right| = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2}$$

Equivalently,

$$S = \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} dt$$

The arc length is obtained by adding infinitely small straight-line segments along the curve to determine its total length.

Space Curves

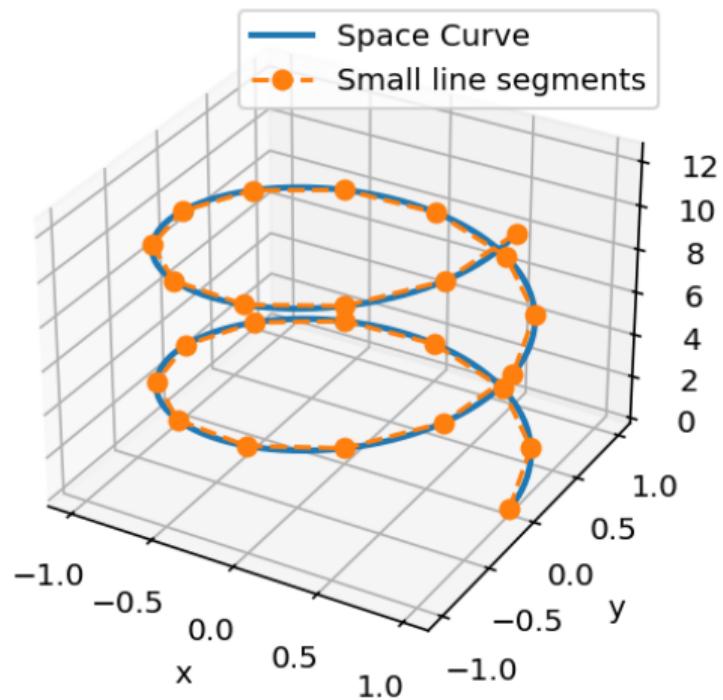


Figure 7: Arc Length as sum of small line segments

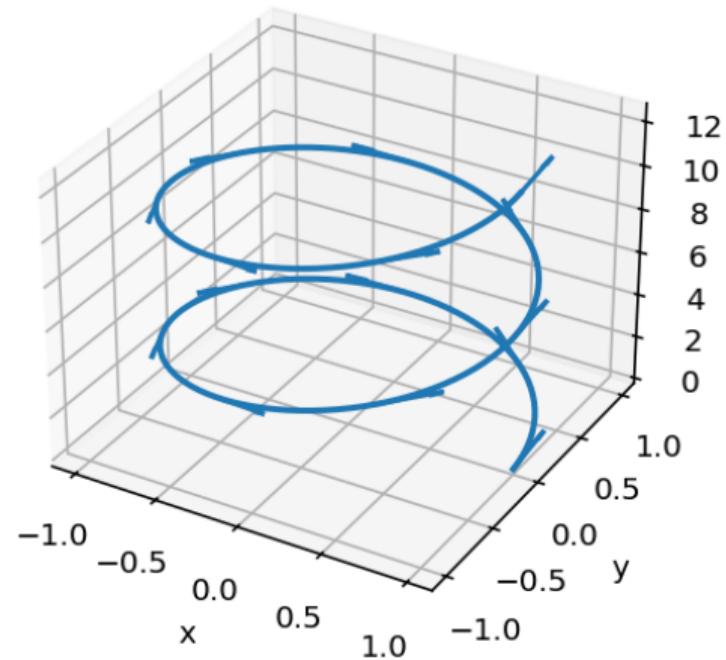


Figure 8: Tangent vectors along a space curve

Space Curves

Tangent Vector: A **tangent vector** to a space curve $\vec{r}(t)$ at a point is the derivative

$$\frac{d\vec{r}}{dt}$$

representing the instantaneous direction of the curve in three-dimensional space.

Velocity Vector: The **velocity vector** is defined as

$$\vec{v} = \frac{d\vec{r}}{dt}$$

This vector is tangent to the curve but is not necessarily of unit length.

Space Curves

Unit Tangent Vector: The **unit tangent vector** is given by

$$\vec{T} = \frac{d\vec{r}}{\left| \frac{d\vec{r}}{dt} \right|}$$

Alternatively, the unit tangent vector can be written as

$$\vec{T} = \frac{d\vec{r}}{ds}$$

where s denotes the arc length parameter.

If a particle moves along the curve, the tangent gives the direction of velocity.

Space Curves

Normal Vector: The **normal vector** shows the direction in which the curve is bending. It is defined as the direction of change of the tangent vector.

Unit normal vector: The **unit normal vector** is

$$\hat{\mathbf{N}} = \frac{d\hat{\mathbf{T}}}{ds}, \quad \text{where } s \text{ is the arc length}$$

- Tangent \rightarrow direction of motion
- Normal \rightarrow direction of curvature (how the path is turning)

Space Curves

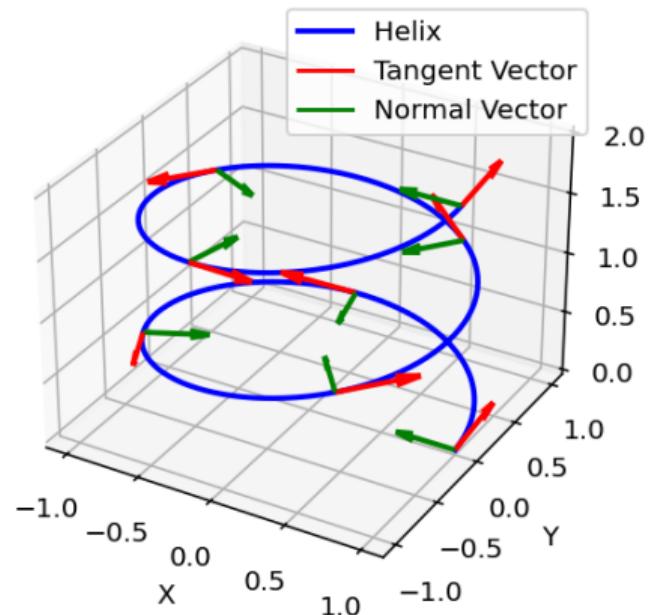


Figure 9: Tangent vector and Normal vector

Space Curves

To find the unit vector along the tangent to a given curve

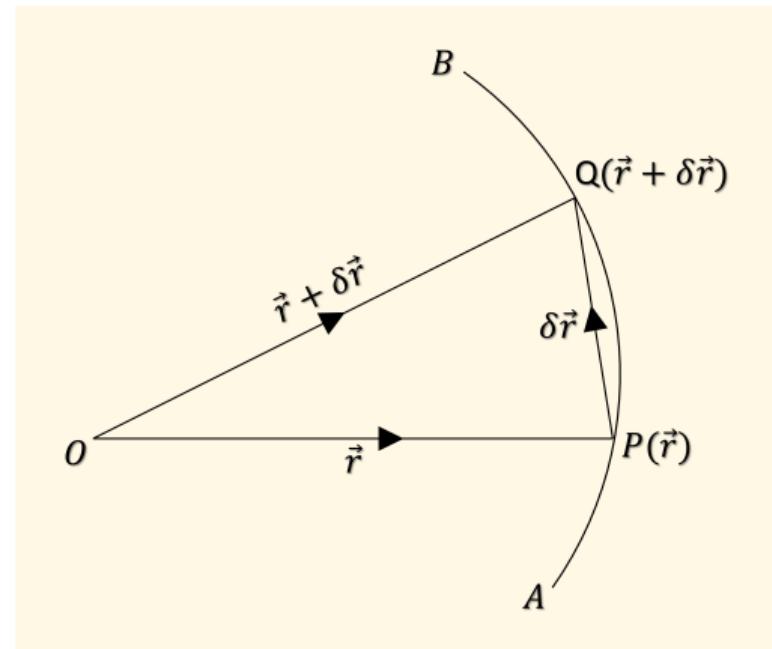
Let $P(\vec{r})$ and $Q(\vec{r} + \delta\vec{r})$ be two consecutive points on a curve C . The position vectors of P and Q with respect to the origin O are respectively \vec{r} and $\vec{r} + \delta\vec{r}$, i.e.,

$$\overrightarrow{OP} = \vec{r}, \quad \overrightarrow{OQ} = \vec{r} + \delta\vec{r}$$

$$\therefore \overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \delta\vec{r}$$

Let point A on the curve be a fixed point and let arc $AP = s$ and arc $AQ = s + \delta s$.

$$\therefore \text{arc } PQ = \delta s$$



Space Curves

Now unit vector along the chord PQ is

$$\widehat{PQ} = \frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} = \frac{\delta \vec{r}}{\text{chord } PQ} = \left(\frac{\delta \vec{r}}{\delta s} \right) \left(\frac{\delta s}{\text{chord } PQ} \right) = \left(\frac{\delta \vec{r}}{\delta s} \right) \left(\frac{\text{arc } PQ}{\text{chord } PQ} \right)$$

Now when point Q tends to point P , the chord PQ tends to the tangent at P . Hence the unit vector along the tangent at P is

$$\lim_{Q \rightarrow P} \left(\frac{\delta \vec{r}}{\delta s} \right) \left(\frac{\text{arc } PQ}{\text{chord } PQ} \right) = \frac{d \vec{r}}{ds} = \vec{r}'$$

The symbol \hat{t} is used for the unit vector along the tangent at P and is taken positive in the direction of increasing s , i.e.,

$$\hat{t} = \vec{r}'$$

Space Curves

If $\vec{r} = (x, y, z)$, where x, y, z are components of \vec{r} , then

$$\frac{d\vec{r}}{ds} = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds} \right) = \hat{t}$$

Here $\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}$ are components of \hat{t} .

Thus,

$$\hat{t} = \frac{d\vec{r}}{ds} = \frac{dx}{ds} \hat{\mathbf{i}} + \frac{dy}{ds} \hat{\mathbf{j}} + \frac{dz}{ds} \hat{\mathbf{k}} \quad (1)$$

Since the magnitude of \vec{t} is unity, on squaring (1) we get

$$1 = \left(\frac{dx}{ds} \right)^2 + \left(\frac{dy}{ds} \right)^2 + \left(\frac{dz}{ds} \right)^2$$

Space Curves

or

$$1 = \left(\frac{dx}{dt} \right)^2 \left(\frac{dt}{ds} \right)^2 + \left(\frac{dy}{dt} \right)^2 \left(\frac{dt}{ds} \right)^2 + \left(\frac{dz}{dt} \right)^2 \left(\frac{dt}{ds} \right)^2$$

or

$$\left(\frac{ds}{dt} \right)^2 = \left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2 = \left| \frac{d\vec{r}}{dt} \right|^2 \quad (2)$$

where t is any parameter.

The formula (2) may be used to find the arc length. Thus

$$s = \int_{t_0}^t \left| \dot{\vec{r}} \right| dt = \int_{t_0}^t \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt \quad (3)$$

Note. Two points P and Q on a curve are consecutive, it does not mean that the points are near in space but the values of the parameter differ by an indefinitely small amount.

Tangent Line at a Point on a Space Curve

To find the equation of the tangent line at a given point $P(\vec{r})$ on the curve C .

Let \vec{R} represent the position vector of a current point on the tangent at P , \vec{t} is unit vector along tangent at P , thus the equation of tangent line at P is

$$\begin{aligned}\vec{R} &= \vec{r} + \lambda \vec{t} \\ \text{or, } \vec{R} &= \vec{r} + \lambda \vec{r}'\end{aligned}\tag{1}$$

where λ is the scalar parameter.

If instead of the parameter s any other parameter t is used then since

$$\dot{\vec{r}} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds} \frac{ds}{dt} = \hat{\vec{t}} \frac{ds}{dt}$$

Tangent Line at a Point on a Space Curve

is parallel to the vector \hat{t} , the equation of tangent line may be written as

$$\vec{R} = \vec{r} + \lambda \dot{\vec{r}}$$

Cor 1. Cartesian Representation

Let

$$\vec{R} = (X, Y, Z), \quad \vec{r} = (x, y, z), \quad \vec{r}' = (x', y', z')$$

The tangent line at the point (x, y, z) is

$$\begin{aligned} \vec{R} &= \vec{r} + \lambda \vec{r}' \\ \text{or, } X\hat{\mathbf{i}} + Y\hat{\mathbf{j}} + Z\hat{\mathbf{k}} &= x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}} + \lambda(x'\hat{\mathbf{i}} + y'\hat{\mathbf{j}} + z'\hat{\mathbf{k}}) \end{aligned} \tag{1}$$

Tangent Line at a Point on a Space Curve

or, whence

$$\frac{X - x}{x'} = \frac{Y - y}{y'} = \frac{Z - z}{z'} = \lambda$$

The direction cosines of the tangent are therefore x' , y' , z' .

If the curve is given by

$$f_1(x, y, z) = 0 \quad \text{and} \quad f_2(x, y, z) = 0,$$

then we have

$$\frac{\partial f_1}{\partial x}x' + \frac{\partial f_1}{\partial y}y' + \frac{\partial f_1}{\partial z}z' = 0,$$

$$\frac{\partial f_2}{\partial x}x' + \frac{\partial f_2}{\partial y}y' + \frac{\partial f_2}{\partial z}z' = 0.$$

Tangent Line at a Point on a Space Curve

Solving these equations, we get

$$\frac{\frac{x'}{\partial f_1 \partial f_2} - \frac{\partial f_1 \partial f_2}{\partial z}}{\frac{\partial f_1 \partial f_2}{\partial y} - \frac{\partial f_1 \partial f_2}{\partial z}} = \frac{\frac{y'}{\partial f_1 \partial f_2} - \frac{\partial f_1 \partial f_2}{\partial x}}{\frac{\partial f_1 \partial f_2}{\partial z} - \frac{\partial f_1 \partial f_2}{\partial x}} = \frac{\frac{z'}{\partial f_1 \partial f_2} - \frac{\partial f_1 \partial f_2}{\partial y}}{\frac{\partial f_1 \partial f_2}{\partial x} - \frac{\partial f_1 \partial f_2}{\partial y}}.$$

Putting the values of x', y', z' in (1), we get the equation of the tangent.

Cor. 2. In case equation of the curve is given by

$$f_1(x, y, z) = 0, \quad f_2(x, y, z) = 0,$$

we have

$$\frac{\partial f_1}{\partial x} \dot{x} + \frac{\partial f_1}{\partial y} \dot{y} + \frac{\partial f_1}{\partial z} \dot{z} = 0,$$

Tangent Line at a Point on a Space Curve

$$\frac{\partial f_2}{\partial x} \dot{x} + \frac{\partial f_2}{\partial y} \dot{y} + \frac{\partial f_2}{\partial z} \dot{z} = 0.$$

On solving these equations, we get

$$\frac{\dot{x}}{\frac{\partial f_1}{\partial y} \frac{\partial f_2}{\partial z} - \frac{\partial f_1}{\partial z} \frac{\partial f_2}{\partial y}} = \frac{\dot{y}}{\frac{\partial f_1}{\partial z} \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial x} \frac{\partial f_2}{\partial z}} = \frac{\dot{z}}{\frac{\partial f_1}{\partial x} \frac{\partial f_2}{\partial y} - \frac{\partial f_1}{\partial y} \frac{\partial f_2}{\partial x}}.$$

Above equation gives the direction cosines of the tangent to the curve of intersection of two surfaces.

The Cartesian equivalent of $\vec{R} = \vec{r} + \lambda \vec{r}'$ is

$$\frac{X - x}{\dot{x}} = \frac{Y - y}{\dot{y}} = \frac{Z - z}{\dot{z}} = c \quad (1)$$

Tangent Line at a Point on a Space Curve

Thus putting the values of $\dot{x}, \dot{y}, \dot{z}$ in (1), we get the equation of the tangent line.

Cor. 3. In case at a point P , $\mathbf{r}'' = 0$, the tangent line at P is called *inflexional* and the point P is called the *point of inflexion*.

Ex.1. Show that the tangent at any point of the curve whose equations, referred to rectangular axes, are $x = 3t$, $y = 3t^2$, $z = 2t^3$ makes a constant angle with the line $y = z - x = 0$.

Solution: For a parametric curve

$$\vec{r}(t) = (x(t), y(t), z(t)),$$

the tangent vector is

$$\vec{r}'(t) = (\dot{x}, \dot{y}, \dot{z})$$

Here,

$$\dot{x} = 3, \quad \dot{y} = 6t, \quad \dot{z} = 6t^2$$

Hence, a tangent direction vector is

$$\vec{T} = (3, 6t, 6t^2)$$

Since direction cosines depend only on ratios, dividing by 3 gives

$$\vec{T} \sim (1, 2t, 2t^2)$$

i.e., the direction cosines are proportional to 1, 2t, 2t².

The line is given by

$$y = 0, \quad z - x = 0$$

Thus,

$$y = 0, \quad z = x,$$

and any point on the line can be written as (x, 0, x).

Hence, a direction vector of the line is

$$\vec{L} = (1, 0, 1)$$

Its magnitude is

$$|\vec{L}| = \sqrt{1^2 + 0^2 + 1^2} = \sqrt{2}$$

Therefore, the direction cosines of the line are

$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right).$$

The angle θ between two vectors \vec{a} and \vec{b} is given by

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Here,

$$\vec{T} = (1, 2t, 2t^2), \quad \vec{L} = (1, 0, 1).$$

Their dot product is

$$\vec{T} \cdot \vec{L} = 1 \cdot 1 + 2t \cdot 0 + 2t^2 \cdot 1 = 1 + 2t^2$$

The magnitudes are

$$|\vec{T}| = \sqrt{1 + (2t)^2 + (2t^2)^2} = \sqrt{1 + 4t^2 + 4t^4} = 1 + 2t^2,$$

and

$$\begin{aligned} |\vec{L}| &= \sqrt{2} \\ \cos \theta &= \frac{1 + 2t^2}{(1 + 2t^2)\sqrt{2}} = \frac{1}{\sqrt{2}} \\ \Rightarrow \theta &= \frac{\pi}{4} \end{aligned}$$

Thus, the angle between the tangent to the curve and the given line is independent of t and remains constant for every point on the curve.

Ex.2. Find the length of the curve given as the intersection of the surfaces

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \quad x = a \cosh\left(\frac{z}{a}\right)$$

from the point $(a, 0, 0)$ to the point (x, y, z) .

Solution: The curve lies on the hyperbolic cylinder

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Using the identity

$$\cosh^2 t - \sinh^2 t = 1,$$

a natural parametrization is

$$x = a \cosh t, \quad y = b \sinh t$$

From the second surface,

$$x = a \cosh\left(\frac{z}{a}\right),$$

and substituting $x = a \cosh t$, we obtain

$$\cosh t = \cosh\left(\frac{z}{a}\right) \Rightarrow z = at$$

∴ The parametric equations of the given curve are

$$x = a \cosh t, \quad y = b \sinh t, \quad z = at$$

Hence,

$$\dot{x} = a \sinh t, \quad \dot{y} = b \cosh t, \quad \dot{z} = a$$

$$\begin{aligned}
 \therefore \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} &= \sqrt{a^2 \sinh^2 t + b^2 \cosh^2 t + a^2} \\
 &= \sqrt{(a^2 + b^2) \cosh^2 t} \\
 &= \sqrt{a^2 + b^2} \cosh t
 \end{aligned}$$

At the point $(a, 0, 0)$, we have $t = 0$, and at the point (x, y, z) , we have $t = t$. Hence the arc length s is

$$\begin{aligned}
 s &= \int_0^t \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt = \int_0^t \sqrt{a^2 + b^2} \cosh t dt \\
 \Rightarrow s &= \sqrt{a^2 + b^2} [\sinh t]_0^t = \sqrt{a^2 + b^2} \sinh t
 \end{aligned}$$

Since $\sinh t = \frac{y}{b}$, we obtain

$$s = \frac{\sqrt{a^2 + b^2}}{b} y \quad \text{which is the required length.}$$

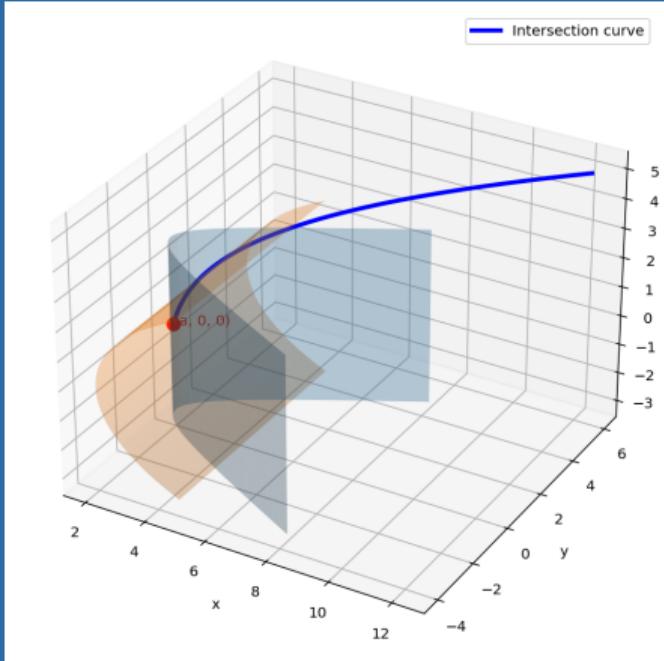


Figure 1: Two Surfaces and Their Intersection Curve

THANK YOU

Vist the website for notes

<https://mathematicalexplorations.co.in>

Subscribe to my YouTube Channel

Mathematical Explorations

