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Space Curves

Space Curve: A space curve is a curve that lies in three-dimensional space and
is represented by using a vector-valued function

r⃗(t) = x(t) î+ y(t) ĵ + z(t) k̂,

where

t is a parameter (often time or any real variable).

x(t), y(t), and z(t) are coordinate functions.

e.g.
Helix: r⃗(t) = (cos t, sin t, t)
Straight line: r⃗(t) = a⃗+ t b⃗
Circle in space: r⃗(t) = (a cos t, a sin t, 0)
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Space Curves

Figure 1: Helix Figure 2: Straight Line Figure 3: Circle
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Space Curves

The curve is known as plane curve if it lies on a plane, otherwise it is said to
be a skew twisted or tortuous curve.

Unlike a plane curve (2D), a space curve moves freely in three-dimensional
space.

The parametric equations of a curve are: x = x(t), y = y(t), z = z(t), where
x, y, z are real valued functions of a single real parameter t ranging over a set
of values a ≤ t ≤ b.

A space curve may also be given as the intersection of two surfaces whose
equations are

f1(x, y, z) = 0 and f2(x, y, z) = 0, then

f1(x, y, z) = 0; f2(x, y, z) = 0
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Space Curves

Figure 4: Plane: z = y Figure 5: Intersection of two surfaces Figure 6: Cylinder: x2 + y2 = 1
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Space Curves

Arc Length of a Space Curve: The arc length is the actual length of the curve
between two points. For a space curve r⃗(t), the arc length from t = a to t = b is
given by

S =

∫ b

a

∣∣∣∣dr⃗dt
∣∣∣∣ dt

where ∣∣∣∣dr⃗dt
∣∣∣∣ =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

Equivalently,

S =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

The arc length is obtained by adding infinitely small straight-line segments along the curve

to determine its total length.

Dr. Rajshekhar Roy Baruah Space Curves February 3, 2026 5 / 29



Space Curves

Figure 7: Arc Length as sum of small line segments Figure 8: Tangent vectors along a space curve
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Space Curves

Tangent Vector: A tangent vector to a space curve r⃗(t) at a point is the deriva-
tive

dr⃗

dt

representing the instantaneous direction of the curve in three-dimensional space.

Velocity Vector: The velocity vector is defined as

v⃗ =
dr⃗

dt

This vector is tangent to the curve but is not necessarily of unit length.
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Space Curves

Unit Tangent Vector: The unit tangent vector is given by

T⃗ =

dr⃗

dt∣∣∣∣dr⃗dt
∣∣∣∣

Alternatively, the unit tangent vector can be written as

T⃗ =
dr⃗

ds

where s denotes the arc length parameter.
If a particle moves along the curve, the tangent gives the direction of velocity.
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Space Curves

Normal Vector: The normal vector shows the direction in which the curve is
bending. It is defined as the direction of change of the tangent vector.

Unit normal vector: The unit normal vector is

N̂ =

dT̂

ds∣∣∣∣∣dT̂ds
∣∣∣∣∣
, where s is the arc length

Tangent → direction of motion

Normal → direction of curvature (how the path is turning)
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Space Curves

Figure 9: Tangent vector and Normal vector
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Space Curves

To find the unit vector along the tan-
gent to a given curve

Let P (r⃗) and Q(r⃗ + δr⃗) be two consecutive
points on a curve C. The position vectors
of P and Q with respect to the origin O are
respectively r⃗ and r⃗ + δr⃗, i.e.,

−−→
OP = r⃗,

−−→
OQ = r⃗ + δr⃗

∴
−−→
PQ =

−−→
OQ−

−−→
OP = δr⃗

Let point A on the curve be a fixed point
and let arc AP = s and arc AQ = s+ δs.

∴ arc PQ = δs
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Space Curves

Now unit vector along the chord PQ is

P̂Q =

−−→
PQ

|
−−→
PQ|

=
δr⃗

chord PQ
=

(
δr⃗

δs

)(
δs

chord PQ

)
=

(
δr⃗

δs

)(
arc PQ

chord PQ

)
Now when point Q tends to point P , the chord PQ tends to the tangent at P . Hence
the unit vector along the tangent at P is

lim
Q→P

(
δr⃗

δs

)(
arc PQ

chord PQ

)
=

dr⃗

ds
= r⃗ ′

The symbol t̂ is used for the unit vector along the tangent at P and is taken positive
in the direction of increasing s, i.e.,

t̂ = r⃗ ′
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Space Curves

If r⃗ = (x, y, z), where x, y, z are components of r⃗, then

dr⃗

ds
=

(
dx

ds
,
dy

ds
,
dz

ds

)
= t̂

Here
dx

ds
,
dy

ds
,
dz

ds
are components of t̂.

Thus,

t̂ =
dr⃗

ds
=

dx

ds
î+

dy

ds
ĵ+

dz

ds
k̂ (1)

Since the magnitude of t⃗ is unity, on squaring (1) we get

1 =

(
dx

ds

)2

+

(
dy

ds

)2

+

(
dz

ds

)2
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Space Curves

or

1 =

(
dx

dt

)2( dt

ds

)2

+

(
dy

dt

)2( dt

ds

)2

+

(
dz

dt

)2( dt

ds

)2

or (
ds

dt

)2

=

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

=

∣∣∣∣dr⃗dt
∣∣∣∣2 (2)

where t is any parameter.
The formula (2) may be used to find the arc length. Thus

s =

∫ t

t0

∣∣∣ ˙⃗r∣∣∣ dt = ∫ t

t0

√
ẋ2 + ẏ2 + ż2 dt (3)

Note. Two points P and Q on a curve are consecutive, it does not mean that the
points are near in space but the values of the parameter differ by an indefinitely
small amount.
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Tangent Line at a Point on a Space Curve

To find the equation of the tangent line at a given point P (r⃗) on the curve
C.
Let R⃗ represent the position vector of a current point on the tangent at P , t⃗ is unit
vector along tangent at P , thus the equation of tangent line at P is

R⃗ = r⃗ + λt⃗

or, R⃗ = r⃗ + λr⃗ ′ (1)

where λ is the scalar parameter.
If instead of the parameter s any other parameter t is used then since

˙⃗r =
dr⃗

dt
=

dr⃗

ds

ds

dt
= t̂

ds

dt
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Tangent Line at a Point on a Space Curve

is parallel to the vector t̂, the equation of tangent line may be written as

R⃗ = r⃗ + λ ˙⃗r

Cor 1. Cartesian Representation
Let

R⃗ = (X,Y, Z), r⃗ = (x, y, z), r⃗ ′ = (x′, y′, z′)

The tangent line at the point (x, y, z) is

R⃗ = r⃗ + λr⃗ ′

or, X î+ Y ĵ+ Zk̂ = x̂i+ ŷj+ zk̂+ λ(x′̂i+ y ′̂j+ z′k̂) (1)
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Tangent Line at a Point on a Space Curve

or, whence
X − x

x′
=

Y − y

y′
=

Z − z

z′
= λ

The direction cosines of the tangent are therefore x′, y′, z′.
If the curve is given by

f1(x, y, z) = 0 and f2(x, y, z) = 0,

then we have
∂f1
∂x

x′ +
∂f1
∂y

y′ +
∂f1
∂z

z′ = 0,

∂f2
∂x

x′ +
∂f2
∂y

y′ +
∂f2
∂z

z′ = 0.
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Tangent Line at a Point on a Space Curve

Solving these equations, we get

x′

∂f1
∂y

∂f2
∂z

− ∂f1
∂z

∂f2
∂y

=
y′

∂f1
∂z

∂f2
∂x

− ∂f1
∂x

∂f2
∂z

=
z′

∂f1
∂x

∂f2
∂y

− ∂f1
∂y

∂f2
∂x

.

Putting the values of x′, y′, z′ in (1), we get the equation of the tangent.

Cor. 2. In case equation of the curve is given by

f1(x, y, z) = 0, f2(x, y, z) = 0,

we have
∂f1
∂x

ẋ+
∂f1
∂y

ẏ +
∂f1
∂z

ż = 0,
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Tangent Line at a Point on a Space Curve

∂f2
∂x

ẋ+
∂f2
∂y

ẏ +
∂f2
∂z

ż = 0.

On solving these equations, we get

ẋ

∂f1
∂y

∂f2
∂z

− ∂f1
∂z

∂f2
∂y

=
ẏ

∂f1
∂z

∂f2
∂x

− ∂f1
∂x

∂f2
∂z

=
ż

∂f1
∂x

∂f2
∂y

− ∂f1
∂y

∂f2
∂x

.

Above equation gives the direction cosines of the tangent to the curve of intersection
of two surfaces.
The Cartesian equivalent of R⃗ = r⃗ + λr⃗ ′ is

X − x

ẋ
=

Y − y

ẏ
=

Z − z

ż
= c (1)
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Tangent Line at a Point on a Space Curve

Thus putting the values of ẋ, ẏ, ż in (1), we get the equation of the tangent line.

Cor. 3. In case at a point P , r′′ = 0, the tangent line at P is called inflexional
and the point P is called the point of inflexion.

Dr. Rajshekhar Roy Baruah Space Curves February 3, 2026 20 / 29



Ex.1. Show that the tangent at any point of the curve whose equations, referred to
rectangular axes, are x = 3t, y = 3t2, z = 2t3 makes a constant angle with the
line y = z − x = 0.
Solution: For a parametric curve

r⃗(t) =
(
x(t), y(t), z(t)

)
,

the tangent vector is
r⃗ ′(t) =

(
ẋ, ẏ, ż

)
Here,

ẋ = 3, ẏ = 6t, ż = 6t2

Hence, a tangent direction vector is

T⃗ = (3, 6t, 6t2)
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Since direction cosines depend only on ratios, dividing by 3 gives

T⃗ ∼ (1, 2t, 2t2)

i.e., the direction cosines are proportional to 1, 2t, 2t2.
The line is given by

y = 0, z − x = 0

Thus,
y = 0, z = x,

and any point on the line can be written as (x, 0, x).
Hence, a direction vector of the line is

L⃗ = (1, 0, 1)

Its magnitude is

|L⃗| =
√
12 + 02 + 12 =

√
2
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Therefore, the direction cosines of the line are(
1√
2
, 0,

1√
2

)
.

The angle θ between two vectors a⃗ and b⃗ is given by

cos θ =
a⃗ · b⃗
|⃗a| |⃗b|

Here,
T⃗ = (1, 2t, 2t2), L⃗ = (1, 0, 1).

Their dot product is

T⃗ · L⃗ = 1 · 1 + 2t · 0 + 2t2 · 1 = 1 + 2t2
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The magnitudes are

|T⃗ | =
√
1 + (2t)2 + (2t2)2 =

√
1 + 4t2 + 4t4 = 1 + 2t2,

and
|L⃗| =

√
2

cos θ =
1 + 2t2

(1 + 2t2)
√
2
=

1√
2

⇒ θ =
π

4

Thus, the angle between the tangent to the curve and the given line is independent
of t and remains constant for every point on the curve.
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Ex.2. Find the length of the curve given as the intersection of the surfaces

x2

a2
− y2

b2
= 1, x = a cosh

(z
a

)
from the point (a, 0, 0) to the point (x, y, z).
Solution: The curve lies on the hyperbolic cylinder

x2

a2
− y2

b2
= 1

Using the identity
cosh2 t− sinh2 t = 1,

a natural parametrization is

x = a cosh t, y = b sinh t
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From the second surface,

x = a cosh
(z
a

)
,

and substituting x = a cosh t, we obtain

cosh t = cosh
(z
a

)
⇒ z = at

∴ The parametric equations of the given curve are

x = a cosh t, y = b sinh t, z = at

Hence,
ẋ = a sinh t, ẏ = b cosh t, ż = a
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∴
√
ẋ2 + ẏ2 + ż2 =

√
a2 sinh2 t+ b2 cosh2 t+ a2

=

√
(a2 + b2) cosh2 t

=
√

a2 + b2 cosh t

At the point (a, 0, 0), we have t = 0, and at the point (x, y, z), we have t = t.
Hence the arc length s is

s =

∫ t

0

√
ẋ2 + ẏ2 + ż2 dt =

∫ t

0

√
a2 + b2 cosh t dt

⇒ s =
√
a2 + b2 [sinh t]t0 =

√
a2 + b2 sinh t

Since sinh t =
y

b
, we obtain

s =

√
a2 + b2

b
y which is the required length.
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Figure 1: Two Surfaces and Their Intersection Curve
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THANK YOU
Vist the website for notes

https://mathematicalexplorations.co.in
Subscribe to my YouTube Channel
Mathematical Explorations
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