1 ANALYSIS OF STRESS

1.1 The Continuum Concept

The continuum concept is a basic idea used in mathematics and physics to describe things that change
smoothly without any breaks or gaps. According to this concept, a quantity can be divided into smaller

and smaller parts endlessly, and between any two values there are infinitely many intermediate values.
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Figure 1.1: The Continuum Concept

For example, when we draw a straight line, we think of it not as a collection of separate dots but
as a smooth, unbroken line made up of infinitely many points placed continuously next to each other.
Similarly, in mathematics, the real number system follows the continuum concept because between any
two real numbers, no matter how close they are, there exist infinitely many more numbers. This idea
is extremely important in calculus, where we study limits, derivatives, and integrals. When we find the

slope of a curve at a point or the area under a curve, we assume that the curve is smooth and continuous,



which is only possible because of the continuum concept. In physics, this concept is used as an approx-
imation to simplify real-world problems. Although matter is actually made up of atoms and molecules,
we often treat solids and fluids as continuous materials. For instance, when studying the flow of a fluid,
we assume that properties like density, pressure, and velocity vary smoothly from one point to another,
rather than jumping abruptly. This assumption allows us to apply mathematical equations to describe
motion, deformation, and forces. Even though at very small scales nature may behave in a discrete way,
the continuum concept works very well at everyday scales and helps us understand and predict physical

behavior accurately.

1.2 Homogeneity

A material is said to be homogeneous if its properties are the same at every point in the body. This
means that no matter where you look inside the material, properties such as density, elasticity, or ther-
mal conductivity remain unchanged. For example, a perfectly pure steel rod with uniform composition
throughout is considered homogeneous. In homogeneity, the material does not vary from place to place,
but it may still behave differently in different directions. Thus, homogeneity is related to spatial unifor-

mity, not direction.
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Figure 1.2: Homogeneity

1.3 Isotropy

A material is called isotropic if its properties are the same in all directions at a given point. This means

that the material responds in the same way whether a force is applied along the x-direction, y-direction,



or any other direction. For instance, glass and many metals (when free from defects) are often treated as

isotropic materials. Isotropy is concerned with directional uniformity, not position.
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Figure 1.3: Isotropy

A material is said to be anisotropic if its properties vary with direction. In such materials, the re-

sponse depends on the direction in which the load or force is applied.

1.4 Mass Density

The concept of mass density is developed using the continuum concept, which assumes that matter is

continuously distributed throughout the body.

Let a body occupy a region V in space. Let us choose a small but finite volume element AV inside

the body, containing a point P. Let the mass contained within this volume be AM.

The average mass density of the material over the volume AV is defined as the ratio of mass to volume

AM
Pav = N

This definition gives only an average value and does not describe the density at a specific point. To
define the density at a particular point P, we let the volume element AV shrink continuously around P
while always containing that point. According to the continuum concept, this limiting process is mean-

ingful.



The mass density at the point P is defined as the limit of the
average density as the volume approaches zero:
AM
= lim — 2.2
P AV—0 AV (2.2
In the limit, the ratio becomes a derivative, and the mass

density may be written as

_am
P=Tav

This represents the mass per unit volume at a point. Mass

density p is a scalar quantity, since it has magnitude only and Figure 1.4: Mass-Density

no direction. In general, p may vary from point to point and may be expressed as a function of position:

p = p(x1,x2,x3)

In a homogeneous material, p is constant throughout the body.

1.5 Forces

Forces acting on a continuum body are - (i) External Forces and (ii) Internal Forces.

External forces again may be of two types - (a) Body Forces (b) Surface Forces

Body Forces: Body forces are those forces which act on all the volume elements of a continuum. These
forces are usually represented by the symbol b; (force per unit mass) or p; (force per unit volume). They
are related through the density by the expression p; = pb;. E.g: Gravitational Force, Electromagnetic

force fields etc.

(a) Body forces (b) Surface forces

Surface Forces: Those forces which act on a surface element, whether it is a portion of the bounding
surface of the continuum or perhaps an arbitrary internal surface, are known as surface forces. These are
designated by f; (force per unit area). Contact forces between bodies are a type of surface forces. E.g:

Pressure Force, Friction Force, Force due to shear stress etc.

Internal forces arise as a result of the mutual interaction of pairs of particles located in the interior
of the medium. According to Newton’s third law, the action of one particle on another is equal in mag-

nitude and opposite in direction to the reaction exerted by the second particle on the first. Hence, the



resultant internal force is zero.
Thus, the resultant force acting on a body is equal to the sum of the total body force and the total

surface force. The resultant moment about a fixed point is equal to the sum of the moments of the body

forces and the surface forces about that point.

1.6 Stress Vector

Let a body occupy a volume V and be bounded by a surface

S. Let a force AF acts on a small surface element of area AS.

l

The stress vector or traction vector t" at a point on the surface is

. c el . X
defined as the limiting value of the force per unit area, namely, : 3
t" = lim AF
T ASS0AS]
\ . S
where 7 denotes the unit normal to the surface element.
X2

&

* An infinite number of traction vectors act at a point, each x;
acting on different surfaces through the point, defined by

different normals. Figure 1.6: Stress Vector

» Traction vectors acting on opposite sides of a surface are

equal and opposite. This can be expressed in vector form:

=7,

1.7 Cauchy Stress Principle

At any point inside a deformable body, the traction vector acting on a plane depends only on the
orientation of the plane (i.e., its normal vector) and the position of the point, and not on the size or
shape of the plane.

Mathematically,
M =g.n

where,

£ = traction vector acting on a surface with unit normal 7,

o = Cauchy stress tensor (second-order tensor)

In Cartesian coordinates,

ti = o0jjn;
where,
* 0jj are the components of the stress tensor
* n; are the components of the unit normal vector

* t; are the components of the traction vector



1.8 Stress Tensor

In continuum mechanics, the stress tensor is a mathematical object that describes the internal forces
acting within a continuous material body.

When a body is subjected to external forces, internal forces
develop between neighboring particles. These internal forces
are distributed over imaginary internal surfaces inside the ma-
terial. The stress tensor provides a complete description of
these internal force distributions at a point.

Stress Tensor in Cartesian Coordinates

The stress tensor o;; is a second-order tensor, which in

Cartesian coordinates can be written as
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Figure 1.7: Stress Tensor

Physical Meaning of Components

Each component is denoted by o;;, where:

* First index i — direction of force component

* Second index j — normal direction of the surface
Examples:

* 011 : Normal stress in x-direction on a plane normal to the x-axis.
* 075 : Shear stress in x-direction on a plane normal to the y-axis.
* 03 : Shear stress in y-direction on a plane normal to the z-axis.

Diagonal terms — Normal stresses

Off-diagonal terms — Shear stresses

Mathematical Form

Using index notation:

t, = 0ijn;
where summation over j is implied (Einstein summation convention).
This shows that the traction vector components are linear combinations of the stress tensor compo-

nents and the surface normal components. Hence, the stress tensor completely determines the internal

force state at a point.

Symmetry of Stress Tensor

From conservation of angular momentum (moment equilibrium), we obtain:

0jj = 0ji
Thus, the stress tensor becomes symmetric. Therefore, instead of 9 independent components, the

symmetric stress tensor has only 6 independent components.



1.9 State of Stress at a Point

The collection of all possible traction vectors £") corresponding to all possible directions 7 defines
the state of stress at point P.

However, it is not necessary to know the traction vector for every possible direction. It is sufficient to
know the traction vectors acting on three mutually perpendicular planes passing through P.

For convenience, we choose three planes perpendicular to the coordinate axes:
* Plane normal to é; (the x;-axis)
¢ Plane normal to é, (the x,-axis)

¢ Plane normal to é; (the x3-axis)

Let the corresponding traction vectors be:

fe) e )

Each traction vector can be written in terms of its Cartesian components as:

e — tiel)él + tgel)éz + t:(;l)ég;
fé) — tgeZ)él + t(;Z)éz + téeZ)é3
fés) = tie?’)él + tge?’)éz + t:(;S)ég;
The nine quantities t;ej ) represent the components of stress at point P. These components form the

()

e . . . .
stress tensor oj; = f; ’". Thus, knowing the traction vectors on three perpendicular planes is enough to

completely describe the state of stress at a point.

1.10 Relation between Stress Tensor and Stress Vector

The relationship between the stress tensor o;; at a point P and the stress vector tl(n) on a plane of arbi-
trary orientation at that point may be established through the force equilibrium or momentum balance

of a small tetrahedron PABC of the continuum, having its vertex at P.



The base of the tetrahedron PABC is taken perpendicular to
#i; and the three faces are taken perpendicular to the coordinate
planes. The line OP is perpendicular to the base ABC.

The components of the unit normal #; are the direction co-
sine as

1ri; = cos LAOP
1, = cos LBOP

13 = cos L,COP

Let, OP = h, then h = OA.ny = OB.ny = OC.nj.
Let the area of AABC, AOBC, AOCA, AOAB be ds, dsy, ds,,
ds3 respectively.

Then the volume of the tetrahedron AV, can be obtained by
AV = 1h ds = 1OA ds; = lOB ds, = lOC ds
= 3 . = 3 .asy = 3 .asy = 3 .ass

From this we get,

h
dSlzdSm:dSnl
ds —dSL—dSn

2 = OB_ 2

h
dS3 :dSm :dSTl:),

s . *(é;
Now, as shown in figure, the forces acting on the tetrahedron are the average stress vectors —tl.( /) on

the faces and t:(ﬁ) on the base together with the body force b; (including inertia forces, if present).
By equilibrium of forces we have,

£ as - as e as, — " ass 4 pbrdv =0

If now the linear dimensions of the tetrahedron are reduced in a constant ratio to one another, the
body forces being of higher order in the small dimensions, tend to zero more rapidly than the surface

forces. At the same time, the average stress vectors approach the specific values appropriate to the
designated directions at P. Therefore, by this limiting process we get,

£ as =t ds + P nyds + g ds
= tMas=t9nds

i) _ (&)

= _ti nj

(
tl
8" = oy [ti] =0ﬁ]

In matrix notation the relationship can be written explicitly as

=

011 012 013
n A ()] _
[tl t2 t3 ]—[Tll ny 113] 0921 (o)) 023 |-
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