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PDE of the Second Order

Definition

A partial differential equation is said to be of the second order when it involves,
at least one of the partial derivative of second order i.e., r(= ∂2z

∂x2 ), s(=
∂2z
∂x∂y ) and

t(= ∂2z
∂y2

) but no partial derivative of third or higher order. The first order partial
derivatives p and q may also be present in these equations. The second order partial
differential equation is given by

f(x, y, z, p, q, r, s, t) = 0
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PDE of the Second Order

The general linear partial differential equation of second order in two independent
variables x and y, with z as dependent variable and variable coefficients is given by

Rr + Ss+ Tt+ Pp+Qq + Zz = F

where R,S, T, P,Q,Z and F are functions of x and y only and not all R,S, T are zero
together.

Remark:

r =
∂2z

∂x2
=
∂p

∂x
, s =

∂2z

∂x∂y
=
∂p

∂y
=
∂q

∂x
, t =

∂2z

∂y2
=
∂q

∂y
.
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Origin of Second Order PDE

Origin of Second Order Partial Differential Equation by the Elimination of
Arbitrary Constants

Let us consider an equation
f(x, y, z, a, b, c) = 0 (1)

where z is a function of two independent variables x, y and a, b, c arbitrary constants.

Differentiating (1) partially w.r.t x and y, we get

∂f

∂x
+
∂f

∂z

∂z

∂x
= 0 or

∂f

∂x
+
∂f

∂z
p = 0 (2)
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Origin of Second Order PDE

and
∂f

∂y
+
∂f

∂z

∂z

∂y
= 0 or

∂f

∂y
+
∂f

∂z
q = 0 (3)

It is not necessary that a, b and c may be eliminated between (1), (2) and (3) to
give a partial differential equation. In that case differentiate (2) partially w.r.t x or
differentiate (3) partially w.r.t y or differentiate either (2) partially w.r.t y or (3)
partially w.r.t x. Thus we get the following equations.

Differential (2) partially w.r.t x,

∂2f

∂x2
+

∂2f

∂x∂z
p+

∂f

∂z

∂p

∂x
= 0 (4)
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Origin of Second Order PDE

Differential (3) partially w.r.t y,

∂2f

∂y2
+

∂2f

∂y∂z
q +

∂f

∂z

∂q

∂y
= 0 (5)

Differential (2) partially w.r.t ’y’

∂2f

∂y∂x
+

∂2f

∂y∂z
p+

∂f

∂z
· ∂p
∂y

= 0 (6)

Now eliminating a, b and c between (1), (2), (3) and one or more (if needed) of (4), (5),
and (6), we shall get a second order partial differential equation.
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Origin of Second Order PDE

Ex. 1. Find a partial differential equation by eleiminating a, b, c from

x2

a2
+
y2

b2
+
z2

c2
= 1

Sol: Given
x2

a2
+
y2

b2
+
z2

c2
= 1 (1)

Differentiating (1) partially w.r.t x and y successively we get

2x

a2
+

2z

c2
∂z

∂x
= 0 or c2x+ a2zp = 0 (2)
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Origin of Second Order PDE

and
2y

b2
+

2z

c2
∂z

∂y
= 0 or c2y + b2zq = 0 (3)

Here it is not possible to eliminate a, b, c between (1), (2) and (3).
So again differentiating (2) partially w.r.t x, we get

c2 + a2
(
∂z
∂xp+ z ∂p

∂x

)
= 0 ∵ ∂p

∂x = ∂
∂x

(
∂z
∂x

)
= ∂2z

∂x2 = r

or, c2 + a2(p2 + zr) = 0

(4)

Now from (2)

c2 = −a
2z

x
p.
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Origin of Second Order PDE

Substituting in (4), we get

−a
2z

x
p+ a2(p2 + zr) = 0 or xzr + xp2 − zp = 0 (5)

Again differentiating (3) partially w.r.t y, we get

c2 + b2
(
∂z
∂y q + z ∂q

∂y

)
= 0 ∵ ∂q

∂y = ∂
∂y

(
∂z
∂y

)
= ∂2z

∂y2
= t

or, c2 + b2(q2 + zt) = 0

(6)

Now from (3),

c2 = −b
2z

y
q.
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Origin of Second Order PDE

Substituting in (6), we get

−b
2z

y
q + b2(q2 + zt) = 0 or yzt+ yq2 − zq = 0 (7)

Again differentiating (2) partially w.r.t y or (3) w.r.t x, we get

a2
(
∂z
∂yp+ z ∂p

∂y

)
= 0 ∵ ∂p

∂y = ∂
∂y

(
∂z
∂x

)
= ∂2z

∂y∂x = ∂2z
∂x∂y = s

or, pq + zs = 0

(8)

The equations (5), (7) and (8) are the required second order partial differential equa-
tions.
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Origin of Second Order PDE

Ex. 2. Obtain the partial differential equation by eliminating arbitrary constants from

z = Ae−lt cosmx sinny where l2 = m2 + n2.

Sol: Given,
z = Ae−lt cosmx sinny (1)

Differentiating (1) partially w.r.t the independent variables t, x and y, we get

∂z

∂t
= −Ale−lt cosmx sinny (2)

∂z

∂x
= −Ame−lt sinmx sinny (3)
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Origin of Second Order PDE

and
∂z

∂y
= Ane−lt cosmx cosny (4)

Differentiating (2), (3) and (4) partially w.r.t t, x and y respectively, we get

∂2z

∂t2
= Al2e−lt cosmx sinny (5)

∂2z

∂x2
= −Am2e−lt cosmx sinny (6)

and
∂2z

∂y2
= −An2e−lt cosmx sinny (7)
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Origin of Second Order PDE

∴ (5) + (6) + (7) ⇒ ∂2z

∂t2
+
∂2z

∂x2
+
∂2z

∂y2
= A

(
l2 −m2 − n2

)
e−lt cosmx sinny

⇒ ∂2z

∂t2
+
∂2z

∂x2
+
∂2z

∂y2
= 0 (∵ l2 = m2 + n2)

which is the required second order partial differential equation.

Dr. Rajshekhar Roy Baruah UNIT 2 September 15, 2025 12 / 50



Origin of Second Order PDE

Origin of Second Order Partial Differential Equation by the Elimination of
Arbitrary Functions

If the given relation between the dependent variable z and two independent variables
x and y contains two arbitrary functions then the elimination of these two functions
from the given relation will give rise to a second order partial differential equation in
general.

Ex. 1. Form a partial differential equation by eliminating the arbitrary functions f
and ϕ from

z = yf(x) + xϕ(y)

Sol: Given,
z = yf(x) + xϕ(y) (1)
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Origin of Second Order PDE

Differentiating (1) partially w.r.t x and y, we get

∂z

∂x
= yf ′(x) + ϕ(y) (2)

and
∂z

∂y
= f(x) + xϕ′(y) (3)

Again differentiating (2) partially w.r.t y, we get

∂2z

∂y ∂x
= f ′(x) + ϕ′(y) (4)
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Origin of Second Order PDE

From (2) and (3),

f ′(x) =
1

y

[
∂z

∂x
− ϕ(y)

]
and ϕ′(y) =

1

x

[
∂z

∂y
− f(x)

]
Substituting in (4), we get

∂2z

∂y ∂x
=

1

y

[
∂z

∂x
− ϕ(y)

]
+

1

x

[
∂z

∂y
− f(x)

]
⇒ xy

∂2z

∂y ∂x
= x

∂z

∂x
+ y

∂z

∂y
−

(
xϕ(y) + yf(x)

)
∂2z

∂y ∂x
=

1

y

[
∂z

∂x
− ϕ(y)

]
+

1

x

[
∂z

∂y
− f(x)

]
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Origin of Second Order PDE

⇒ xy
∂2z

∂y ∂x
= x

∂z

∂x
+ y

∂z

∂y
−

(
xϕ(y) + yf(x)

)
Substituting from (1),

xy
∂2z

∂y ∂x
= x

∂z

∂x
+ y

∂z

∂y
− z

⇒ xys = xp+ yq − z

which is the required partial differential equation of order 2.

Ex. 2. Form a partial differential equation by eliminating arbitrary functions f and g
from

z = f(x2 − y) + g(x2 + y).
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Origin of Second Order PDE

Solution: Given,
z = f(x2 − y) + g(x2 + y) (1)

Differentiating (1) partially w.r.t x and y, we get

∂z

∂x
= 2xf ′(x2 − y) + 2xg′(x2 + y) (2)

∂z

∂y
= −f ′(x2 − y) + g′(x2 + y) (3)

Differentiating (2) partially w.r.t x and (3) w.r.t y, we get

∂2z

∂x2
= 4x2f ′′(x2 − y) + 2f ′(x2 − y) + 4x2g′′(x2 + y) + 2g′(x2 + y) (4)
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Origin of Second Order PDE

∂2z

∂y2
= f ′′(x2 − y) + g′′(x2 + y) (5)

From (2),

f ′(x2 − y) + g′(x2 + y) =
1

2x

∂z

∂x
(6)

Substituting from (5) and (6) in (4), we get

∂2z

∂x2
= 4x2

∂2z

∂y2
+

1

x

∂z

∂x

or

x
∂2z

∂x2
= 4x3

∂2z

∂y2
+
∂z

∂x
⇒ xr = 4x3t+ p

which is the required differential equation of order 2.
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Origin of Second Order PDE

Origin of Second Order Partial Differential Equation of Special Type

Let
z = f(u) + g(v) + w (1)

where f and g are functions of u and v respectively and u, v and w are prescribed
functions of x and y.
Differentiating both sides of (1) partially w.r.t. x and y respectively, we get

p = f ′(u)ux + g′(v) vx + wx (2)

and
q = f ′(u)uy + g′(v) vy + wy (3)
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Origin of Second Order PDE

Again differentiating (2) partially w.r.t x and y and differentiating (3) partially w.r.t
y, we get

r =
∂p

∂x
= f ′′(u)u2x + g′′(v) v2x + f ′(u)uxx + g′(v) vxx + wxx (4)

s =
∂p

∂y
= f ′′(u)uyux + g′′(v) vyvx + f ′(u)uxy + g′(v) vxy + wxy (5)

and

t =
∂q

∂y
= f ′′(u)u2y + g′′(v) v2y + f ′(u)uyy + g′(v) vyy + wyy (6)

Equations (2)–(6) can be written as

(p− wx)− f ′(u)ux − g′(v)vx = 0 (7)
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Origin of Second Order PDE

(q − wy)− f ′(u)uy − g′(v)vy = 0 (8)

(r − wxx)− f ′(u)uxx − g′(v)vxx − f ′′(u)u2x − g′′(v)v2x = 0 (9)

(s− wxy)− f ′(u)uxy − g′(v)vxy − f ′′(u)uyux − g′′(v)vyvx = 0 (10)

(t− wyy)− f ′(u)uyy − g′(v)vyy − f ′′(u)u2y − g′′(v)v2y = 0 (11)

Eliminating f ′(u), g′(v), f ′′(u) and g′′(v) from equation (7)–(11), we get∣∣∣∣∣∣∣∣∣∣
p− wx ux vx 0 0
q − wy uy vy 0 0
r − wxx uxx vxx u2x v2x
s− wxy uxy vxy uxuy vxvy
t− wyy uyy vyy u2y v2y

∣∣∣∣∣∣∣∣∣∣
= 0
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Origin of Second Order PDE

Expanding with respect to the first column, we get a differential equation of the form

Rr + Ss+ Tt+ Pp+Qq =W (12)

where R,S, T, P,Q and W are known functions of x and y.

Equation (12) is a linear partial differential equation of second order, and is
obtained by eliminating the functions f and g. This equation (12) is of special type in
which the dependent variable z does not occur.

The relation (1) is a solution of the second order linear partial differential equation
(12).
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Special Types of Second Order PDE

Type I: Under this type, we consider equations of the form

r =
∂2z

∂x2
=
F

R
= f1(x, y), t =

∂2z

∂y2
=
F

T
= f2(x, y), s =

∂2z

∂x∂y
=
F

S
= f3(x, y)

Equations of this type are solved by direct integration of both sides partially w.r.t. x or
y as possible. When integration partially w.r.t. x is done then y is treated as constant
and the constant of integration is taken as some function of y and when integration
partially w.r.t. y is done then x is treated as constant and the constant of integration
is taken as some function of x.
Ex. 1. Solve xys = 1.
Sol. Given,

s =
∂2z

∂x∂y
=

1

xy
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Special Types of Second Order PDE

Integrating both sides partially w.r.t. x, treating y constant, we get

∂z

∂y
=

1

y
log x+ f(y)

Again integrating both sides partially w.r.t. y, treating x constant, we get

z = log y · log x+

∫
f(y) dy + ψ(x)

or
z = log y · log x+ ϕ(y) + ψ(x)

where ϕ(y) and ψ(x) are arbitrary functions.
Ex. 2. Solve xy2s = 1− 2x2y.
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Special Types of Second Order PDE

Sol. The given equation can be written as

s =
∂2z

∂x ∂y
=

1− 2x2y

xy2
=

1

xy2
− 2

x

y

Integrating partially w.r.t. ’x’, (treating y constant), we get

∂z

∂y
=

1

y2
log x− x2

y
+ f(y)

Again integrating partially w.r.t. y, we get

z = −1

y
log x− x2 log y +

∫
f(y) dy + ψ(x)
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Special Types of Second Order PDE

or

z = −1

y
log x− x2 log y + ϕ(y) + ψ(x)

where ϕ(y) and ψ(x) are arbitrary functions.
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Type II: Under this type we consider equations of the following forms

Rr + Pp = F i.e.
∂p

∂x
+
P

R
p =

F

R
, Here S = 0, T = Q = Z, R ̸= 0, P ̸= 0

Ss+ Pp = F i.e.
∂p

∂y
+
P

S
p =

F

S
, Here R = 0, T = Q = Z, S ̸= 0, P ̸= 0

Ss+Qq = F i.e.
∂q

∂x
+
Q

S
q =

F

S
, Here R = 0, T = P = Z, S ̸= 0, Q ̸= 0

Tt+Qq = F i.e.
∂q

∂y
+
Q

T
q =

F

T
, Here R = 0, S = P = Z, T ̸= 0, Q ̸= 0
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These equations are linear equations of the form

dy

dx
+ Py = Q

whose I.F. = e
∫
P dx

and the solution is

y e
∫
Pdx =

∫
Qe

∫
Pdx dx+ C.

Ex. 1. Solve xr + p = 9x2y3.
Sol. The given equation can be written as

∂p

∂x
+

1

x
p = 9xy3

which is linear in p, whose I.F. = e
∫ 1

xdx = elog x = x.
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p · x =

∫
(9y3) · x dx+ f(y) = 3x2y3 + ϕ(y) (Treating y constant)

⇒ p =
∂z

∂x
= 3x2y3 +

1

x
ϕ(y)

Integrating partially w.r.t. x, we get

z = x3y3 + ϕ(y) log x+ ψ(y)

where ϕ and ψ are arbitrary functions of y.
Alt: The given equation can also be written as

∂

∂x
(xp+ 1) = 9x2y3
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Integrating partially w.r.t. x (treating y constant) we get

xp+ 1 = 3x3y3 + f(y)

⇒ p =
∂z

∂x
= 3x2y3 +

1

x
{f(y)− 1}

Again integrating partially w.r.t. x (treating y constant), we get

z = x3y3 + {f(y)− 1} log x+ ψ(y)

or
z = x3y3 + ϕ(y) log x+ ψ(y), where ϕ(y) = f(y)− 1

which is the required solution.
Ex. 2. Solve sx+ q = 4x+ 2y + 2.
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Solution: The given equation can be written as

∂q

∂x
+

1

x
q =

4x+ 2y + 2

x

which is linear in q, whose I.F. = e
∫ 1

xdx = elog x = x.

q · x =

∫
x · (4x+ 2y + 2)

x
dx+ f(y)

=

∫
(4x+ 2y + 2)dx+ f(y) = 2x2 + 2(y + 1)x+ f(y)

⇒ q =
∂z

∂y
= 2x+ 2(y + 1) +

1

x
f(y)
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Integrating partially w.r.t. y, we get

z = 2xy + y2 + 2y +
1

x
ϕ(y) + ψ(x), where

∫
f(y)dy = ϕ(y).

or

z = 2xy + y2 + 2y +
1

x
ϕ(y) + F (x), where F (x) = ψ(x).

or
z = 2x2y + xy2 + 2xy + ϕ(y) + F (x),

where ϕ(y) and F (x) are arbitrary functions.
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Type III: Under this type, we consider equations of the form

Rr + Ss+ Pp = F or R

(
∂p

∂x

)
+ S

(
∂p

∂y

)
= F − Pp

and

Ss+ Tt+Qq = F or S

(
∂q

∂x

)
+ T

(
∂q

∂y

)
= F −Qq.

These are linear partial differential equations of order one with p (or q) as dependent
variable and x, y as independent variables.

Ex. 1. Solve xy r + x2s− y p = x3ey.
Sol. The given equation can be written as

xy
∂p

∂x
+ x2

∂p

∂y
= x3ey + yp (1)
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which is Lagrange’s equation in p and the Lagrange’s auxiliary equations are

dx

xy
=
dy

x2
=

dp

x3ey + yp
.

Taking 1st and 2nd fractions, we get

x dx− y dy = 0.

Integrating,
x2 − y2 = c1. (2)

Taking 2nd and 3rd fractions, we get

dp

dy
=
x3y2 + yp

x2
= xey +

yp

x2

or
dp

dy
− y

y2 + c1
p =

√
(y2 + c1)e

y
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which is linear in p, whose

I.F. = e
∫
− y

y2+c1
dy

= e−
1
2
log(y2+c1) = (y2 + c1)

−1/2

∴ p(y2 + c1)
−1/2 =

∫ √
(y2 + c1)ey(y

2 + c1)
−1/2dy + c2

or
p√

y2 + c1
=

∫
eydy + c2 = ey + c2

or
p

x
= ey + c2

From (2) and (3), the solution of (1) is

p

x
= ey + f(x2 − y2)
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or

p =
∂z

∂x
= xey + xf(x2 − y2)

Integrating partially w.r.t. x, (treating y constant) we get

z = ey
∫
xdx+

∫
xf(x2 − y2)dx+ ψ(y)

or

z =
1

2
x2ey +

1

2

∫
2xf(x2 − y2)dx+ ψ(y)

or

z =
1

2
x2ey +

1

2
ϕ(x2 − y2) + ψ(y)

or
2z = x2ey + ϕ(x2 − y2) + F (y)

where 2ψ(y) = F (y) and ϕ and F are arbitrary functions.
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Ex. 2. Solve yt+ xs+ q = 8yx2 + 9y2.
Sol. The given equation can be written as

x
∂q

∂x
+ y

∂q

∂y
= −q + 8yx2 + 9y2 (1)

which is Lagrange’s equation in q and the Lagrange’s auxiliary equations are

dx

x
=
dy

y
=

dq

−q + 8yx2 + 9y2

Taking 1st and 2nd fractions, we have

dy

y
− dx

x
= 0
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Integrating, log y − log x = log y
x = c1

⇒ y

x
= c1 (2)

Taking 2nd and 3rd fractions, we get

dq

dy
+

1

y
q = 8x2 + 9y =

8

c21
y2 + 9y using (2)

or
dq

dy
+

1

y
q =

8

c21
y2 + 9y

which is linear in q, whose I.F. = e
∫

1
y
dy

= elog y = y.

∴ yq =

∫ ( 8

c21
y2 + 9y

)
y dy + c2 =

( 8

c21

)y4
4

+ 3y3 + c2
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yq =
2

c21
y4 + 3y3 + c2 (3)

From (2) and (3), solution of (1) is

yq − 2x2

y2
− 3y3 = F (y/x)

or

q =
2x2

y
+ 3y2 +

1

y
F (y/x)

Integrating w.r.t. y, (treating x constant), we get

z = x
∂z

∂x
+ y

∂z

∂y
=

∫ (2x2
y

+ 3y2 +
1

y
F (y/x)

)
dy +Φ(x)
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z = x2y + y3 +

∫
1

y
F (y/x) dy +Φ(x)

Putting y/x = t, (1/x)dy = dt, we have

z = x2y + y3 +

∫
1

t
F (t) dt+Ψ(x)

where ∫
1

t
F (t) dt = Φ(t) = Φ(y/x)

which is the required solution of (1), where Φ(y/x) and Ψ(x) are arbitrary functions.
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Type IV : Under this type, we consider equations of the forms

Rr + Pp+ Zz = F i.e., R
∂2z

∂x2
+ P

∂z

∂x
+ Zz = F (1)

and

Tt+Qq + Zz = F i.e., T
∂2z

∂y2
+Q

∂z

∂y
+ Zz = F (2)

These equations are ordinary linear differential equations of order two with independent
variable x in (1) and y in (2).

Ex. 1. Solve: r − p−
(
1
y

)
( 1y − 1)z = x2y − x2y2 + 2xy3 − 2y3.

Sol. Taking D ≡ ∂
∂x , the given differential equation can be written as[

D2 −D −
(
1
y

)
( 1y − 1)

]
z = x2y − x2y2 + 2xy3 − 2y3 (1)
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or [
D − 1

y

][
D +

(
1
y − 1

)]
z = x2y − x2y2 + 2xy3 − 2y3 (2)

whose C.F. = ex/y ϕ1(y) + ex(1−1/y)ϕ2(y)

To find the P.I. of (1), let
z = F1x

2 + F2x+ F3 (3)

where F1, F2, F3 are functions of y or constants.

∴ Dz =
∂z

∂x
= 2F1x+ F2

and

D2z =
∂2z

∂x2
= 2F1
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Putting in (1), we get

2F1 − (2F1x+ F2)−
(
1
y

)(
1
y − 1

)
(F1x

2 + F2x+ F3) = x2y − x2y2 + 2xy3 − 2y3

Equating coefficients of like powers of x, we get

−
(
1
y

)(
1
y − 1

)
F1 = y − y2 (4)

−2F1 −
(
1
y

)(
1
y − 1

)
F2 = 2y3 (5)

and
2F1 − F2 −

(
1
y

)(
1
y − 1

)
F3 = −2y3 (6)

From (4), F1 = −y3, ∴ from (5) F2 = 0 and from (6) F3 = 0

∴ from (3), P.I. = −y3x2.
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Hence the required solution of (1) is

z = C.F.+ P.I.

or
z = ex/y ϕ1(y) + ex(1−1/y)ϕ2(y)− x2y3.
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THANK YOU
Vist the website for notes

https://mathematicalexplorations.co.in
Subscribe to my YouTube Channel
Mathematical Explorations
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