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Types of Integrals

Types of Integrals in First Order PDEs

Consider a first-order PDE of the form

F (x, y, z, p, q) = 0, where p =
∂z

∂x
, q =

∂z

∂y
.

Definition: A complete integral of a PDE is a solution which contains as many arbi-
trary constants as the number of independent variables in the PDE. For a PDE in two
independent variables (x, y), the complete integral will contain two arbitrary constants,
say a and b.
Example:

z = ax+ by + ab,

Mathematical Explorations Non-Linear Partial Differential Equation September 1, 2025 1 / 86



Types of Integrals

is a complete integral of a PDE in x and y, since it involves two arbitrary constants a
and b.
Definition: A particular integral of a PDE is obtained by assigning specific numerical
values to the arbitrary constants in the complete integral. This gives one specific
solution surface from the family of solutions represented by the complete integral.
Example: From the complete integral

z = ax+ by + ab,

if we set a = 1, b = 2, we get
z = x+ 2y + 2,

which is a particular integral.
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Types of Integrals

Definition: A singular integral of a PDE is a special solution that cannot be obtained
by simply assigning values to the arbitrary constants in the complete integral. It is
obtained by eliminating the constants from the complete integral using the conditions

∂z

∂a
= 0,

∂z

∂b
= 0,

which corresponds geometrically to finding the envelope of the family of surfaces given
by the complete integral.
Example: For the complete integral

z = ax+ by + ab,
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Types of Integrals

eliminating a and b gives the singular integral

z = xy.

Definition: A general integral of a PDE is a solution which contains an arbitrary
function, rather than a finite number of arbitrary constants. This represents the most
general form of the solution.
Example:

z = f(x+ y),

is a general integral, where f is an arbitrary function of x+ y.
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Compatible System of First–Order Equations

Compatible System of First–Order Equations

Let us consider first order partial differential equations

f(x, y, z, p, q) = 0 (1)

and
g(x, y, z, p, q) = 0. (2)

Equations (1) and (2) are known as compatible when every solution of one is also a
solution of the other.
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Compatible System of First–Order Equations

To find condition for (1) and (2) to be compatible.

Let,

J = Jacobian of f and g =
∂(f, g)

∂(p, q)
̸= 0 (3)

Then (1) and (2) can be solved to obtain the explicit expressions for p and q given by

p = ϕ(x, y, z) and q = ψ(x, y, z). (4)
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Compatible System of First–Order Equations

The condition that the pair of equations (1) and (2) should be compatible reduces then
to the condition that the system of equations (4) should be completely integrable, i.e.,
that the equation

dz = p dx+ q dy or ϕdx+ ψ dy − dz = 0, using (4). (5)

should be integrable. (5) is integrable if

ϕ

(
∂ψ

∂z
− 0

)
+ ψ

(
0− ∂ϕ

∂z

)
+ (−1)

(
∂ϕ

∂y
− ∂ψ

∂x

)
= 0

which is equivalent to
∂ψ

∂x
+ ϕ

∂ψ

∂z
=
∂ϕ

∂y
+ ψ

∂ϕ

∂z
. (6)
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Compatible System of First–Order Equations

Substituting from equations (4) in (1) and differentiating w.r.t. x and z respectively,
we get

∂f

∂x
+
∂f

∂p

∂ϕ

∂x
+
∂f

∂q

∂ψ

∂x
= 0. (7)

and
∂f

∂z
+
∂f

∂p

∂ϕ

∂z
+
∂f

∂q

∂ψ

∂z
= 0. (8)

From (7) and (8),

∂f

∂x
+ ϕ

∂f

∂z
+
∂f

∂p

(
∂ϕ

∂x
+ ϕ

∂ϕ

∂z

)
+
∂f

∂q

(
∂ψ

∂x
+ ϕ

∂ψ

∂z

)
= 0. (9)
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Compatible System of First–Order Equations

Similarly (2) yields

∂g

∂x
+ ϕ

∂g

∂z
+
∂g

∂p

(
∂ϕ

∂x
+ ϕ

∂ϕ

∂z

)
+
∂g

∂q

(
∂ψ

∂x
+ ϕ

∂ψ

∂z

)
= 0. (10)

Solving (9) and (10),

∂ψ

∂x
+ ϕ

∂ψ

∂z
=

1

J

[
∂(f, g)

∂(x, p)
+ ϕ

∂(f, g)

∂(z, p)

]
. (11)

Again, substituting from equations (4) in (1) and differentiating w.r.t. y and z and
proceeding as before, we obtain

∂ϕ

∂y
+ ψ

∂ϕ

∂z
= − 1

J

[
∂(f, g)

∂(y, q)
+ ψ

∂(f, g)

∂(z, q)

]
. (12)
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Compatible System of First–Order Equations

Substituting from equations (11) and (12) in (6) and replacing ϕ, ψ by p, q respectively,
we obtain

1

J

[
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)

]
= − 1

J

[
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)

]
, (1)

or
[f, g] = 0, (13)

where

[f, g] ≡ ∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
. (14)
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Compatible System of First–Order Equations

A PARTICULAR CASE:

To show that first order partial differential equations p = P (x, y) and q = Q(x, y) are

compatible if and only if
∂P

∂y
=
∂Q

∂x
.

Proof. Given
∂z

∂x
= p = P (x, y),

∂z

∂y
= q = Q(x, y) (1)

Since

dz =

(
∂z

∂x

)
dx+

(
∂z

∂y

)
dy = p dx+ q dy (2)
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Compatible System of First–Order Equations

it follows that the given PDEs (1) are compatible iff

dz = P dx+Qdy (3)

is integrable.
Since P and Q are functions of x, y, Pdx+Qdy is exact iff

∂P

∂y
=
∂Q

∂x
.

Therefore, (3) is integrable iff
∂P

∂y
=
∂Q

∂x
.
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Compatible System of First–Order Equations

Remark 1

If
∂P

∂y
=
∂Q

∂x
, then the system of PDEs (1) is compatible and hence they possess a

common solution.

Remark 2

If
∂P

∂y
̸= ∂Q

∂x
, then the system of two given partial differential equations (1) is not

compatible and hence these equations possess no solution.
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Compatible System of First–Order Equations

Ex. 1. Show that the differential equations p = x2 − ay, q = y2 − ax are compatible
and find their common solution.

Sol: We know that the system of equations

p = P (x, y), q = Q(x, y) (1)

is compatible iff
∂P

∂y
=
∂Q

∂x

Comparing with the given system

p = x2 − ay, P = x2 − ay, (2)

q = y2 − ax, Q = y2 − ax (3)
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Compatible System of First–Order Equations

From (2) and (3),
∂P

∂y
= −a, ∂Q

∂x
= −a ⇒ ∂P

∂y
=
∂Q

∂x

So equations (2) are compatible.
Common Solution of (2):
Substituting the values of p and q from (2) in dz = p dx+ q dy, we get

dz = (x2 − ay) dx+ (y2 − ax) dy = x2dx+ y2dy − a d(xy)

Integrating,

z =
x3 + y3

3
− axy + c, c is an arbitrary constant (4)

Equation (4) is the required common solution of the given equations (2).
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Compatible System of First–Order Equations

Ex. 2. Show that the equations xp = yq and z(xp + yq) = 2xy are compatible and
solve them.
Sol. Let

f(x, y, z, p, q) = xp− yq = 0 (1)

g(x, y, z, p, q) = z(xp+ yq)− 2xy = 0 (2)

∴
∂(f, g)

∂(x, p)
=

∣∣∣∣∣∣∣
∂f

∂x

∂f

∂p
∂g

∂x

∂g

∂p

∣∣∣∣∣∣∣ =
∣∣∣∣∣ p x

zp− 2y xz

∣∣∣∣∣ = 2xy,

∂(f, g)

∂(z, p)
=

∣∣∣∣∣∣∣
∂f

∂z

∂f

∂p
∂g

∂z

∂g

∂p

∣∣∣∣∣∣∣ =
∣∣∣∣∣ 0 x

xp+ yq xz

∣∣∣∣∣ = −x2p− xyq,
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Compatible System of First–Order Equations

∂(f, g)

∂(y, q)
=

∣∣∣∣∣∣∣
∂f

∂y

∂f

∂q
∂g

∂y

∂g

∂q

∣∣∣∣∣∣∣ =
∣∣∣∣∣ −q −y

zq − 2x zy

∣∣∣∣∣ = −2xy,

∂(f, g)

∂(z, q)
=

∣∣∣∣∣∣∣
∂f

∂z

∂f

∂q
∂g

∂z

∂g

∂q

∣∣∣∣∣∣∣ =
∣∣∣∣∣ 0 −y

xp+ yq zy

∣∣∣∣∣ = xyp+ y2q.

Hence,

[f, g] =
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
.
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Compatible System of First–Order Equations

Substituting values,

[f, g] = 2xy − x2p2 − xyqp− 2xy + xypq + y2q2.

= −xp(xp+ yq) + yq(xp+ yq) = −(xp− yq)(xp+ yq).

Using (1), we get [f, g] = 0. Hence, (1) and (2) are compatible.
Solving (1) and (2) for p and q, we get

p =
y

z
, q =

x

z
. (3)

Using (3) in dz = p dx+ q dy, we have

dz =
(y
z

)
dx+

(x
z

)
dy ⇒ z dz = d(xy)
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Compatible System of First–Order Equations

Integrating,

z2

2
= xy +

c

2
or z2 = 2xy + c, where c is an arbitrary constant.

Ex. 3. Show that the equations xp − yq = x and x2p + q = xz are compatible and
find their solution.
Sol. Let

f(x, y, z, p, q) = xp− yq − x = 0 (1)

g(x, y, z, p, q) = x2p+ q − xz = 0. (2)

∴
∂(f, g)

∂(x, p)
=

∣∣∣∣∣
∂f
∂x

∂f
∂p

∂g
∂x

∂g
∂p

∣∣∣∣∣ =
∣∣∣∣∣ p− 1 x

2xp− z x2

∣∣∣∣∣ = (p− 1)x2 − x(2xp− z).
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Compatible System of First–Order Equations

Similarly,
∂(f, g)

∂(z, p)
= x2,

∂(f, g)

∂(y, q)
= −q, ∂(f, g)

∂(z, q)
= −xy.

∴ [f, g] =
∂(f, g)

∂(x, p)
p+

∂(f, g)

∂(y, q)
q +

∂(f, g)

∂(z, p)
p+

∂(f, g)

∂(z, q)
q

= (p− 1)x2 − x(2xp− z)− px2 − q − xyq

= −x2 + xz − q − xyq = −x2 + xz − qxy, by (2)

= x(−x+ z) + (xp− yq) = 0, by (1).

Hence (1) and (2) are compatible.
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Compatible System of First–Order Equations

Solving (1) and (2) for p and q,

p =
1 + yz

1 + xy
, q =

x(z − x)

1 + xy
. (3)

Using (3) in dz = pdx+ qdy,

dz =
(1 + yz)

(1 + xy)
dx+

x(z − x)

(1 + xy)
dy

⇒ (1 + xy)dz = (1 + yz)dx+ x(z − x)dy

⇒ (1 + xy)dz − z(ydx+ xdy) = dx− x2dy

⇒ (1 + xy) dz − z d(xy)

(1 + xy)2
=
dx− x2dy

(1 + xy)2
=

dx
x2 − dy

(y + 1/x)2
⇒ d

(
z

1 + xy

)
= −d(y + 1/x)

(y + 1/x)2
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Compatible System of First–Order Equations

Integrating it,
z

1 + xy
=

1

y + 1/x
+ c or

z

1 + xy
=

x

1 + xy
+ c.

∴ z − x = c(1 + xy), c being an arbitrary constant.
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Charpit’s Method

Charpit’s Method (General method of solving partial differential
equations of order one but of any degree)

Let the given partial differential equation of first order and non–linear in p and q be

f(x, y, z, p, q) = 0 (1)

and
dz = p dx+ q dy (2)

We know that the next step consists in finding another relation

F (x, y, z, p, q) = 0 (3)
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Charpit’s Method

such that when the values of p and q obtained by solving (1) and (3), are substituted
in (2), it becomes integrable. The integration of (2) will give the complete integral of
(1).
In order to obtain (3), differentiate partially (1) and (3) with respect to x and y and
get

∂f

∂x
+
∂f

∂z
p+

∂f

∂p

∂p

∂x
+
∂f

∂q

∂q

∂x
= 0, (4)

∂F

∂x
+
∂F

∂z
p+

∂F

∂p

∂p

∂x
+
∂F

∂q

∂q

∂x
= 0, (5)

∂f

∂y
+
∂f

∂z
q +

∂f

∂p

∂p

∂y
+
∂f

∂q

∂q

∂y
= 0, (6)
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Charpit’s Method

∂F

∂y
+
∂F

∂z
q +

∂F

∂p

∂p

∂y
+
∂F

∂q

∂q

∂y
= 0 (7)

Eliminating ∂p
∂x from (4) and (5), we get(
∂f

∂x
+
∂f

∂z
p+

∂f

∂q

∂q

∂x

)
∂F

∂p
−
(
∂F

∂x
+
∂F

∂z
p+

∂F

∂q

∂q

∂x

)
∂f

∂p
= 0

or equivalently(
∂f

∂x

∂F

∂p
− ∂F

∂x

∂f

∂p

)
+

(
∂f

∂z

∂F

∂p
− ∂F

∂z

∂f

∂p

)
p+

(
∂f

∂q

∂F

∂p
− ∂F

∂q

∂f

∂p

)
∂q

∂x
= 0 (8)
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Charpit’s Method

Similarly, eliminating ∂q
∂y from (6) and (7), we get(

∂f

∂y

∂F

∂q
− ∂F

∂y

∂f

∂q

)
+

(
∂f

∂z

∂F

∂q
− ∂F

∂z

∂f

∂q

)
q +

(
∂f

∂p

∂F

∂q
− ∂F

∂p

∂f

∂q

)
∂p

∂y
= 0 (9)

Since ∂q
∂x = ∂2z

∂x∂y = ∂p
∂y , the last term in (8) is the same as that in (9), except for a

minus sign and hence they cancel on adding (8) and (9).
Therefore, adding (8) and (9) and rearranging the terms, we obtain(
∂f

∂x

∂F

∂p
− ∂F

∂x

∂f

∂p

)
+

(
∂f

∂y

∂F

∂q
− ∂F

∂y

∂f

∂q

)
+

(
∂f

∂z

∂F

∂p
− ∂F

∂z

∂f

∂p

)
p+

(
∂f

∂z

∂F

∂q
− ∂F

∂z

∂f

∂q

)
q = 0

(10)
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Charpit’s Method

This is a linear equation of the first order to obtain the desired function F . Integral of
(10) is obtained by solving the auxiliary equations

dp(
∂f
∂x

)
+ p

(
∂f
∂z

) =
dq(

∂f
∂y

)
+ q

(
∂f
∂z

) =
dz

−p
(
∂f
∂p

)
− q

(
∂f
∂q

) =
dx

−∂f
∂p

=
dy

−∂f
∂q

=
dF

0
(11)

Since any of the integrals of (11) will satisfy (10), an integral of (11) which involves
p or q (or both) will serve along with the given equation to find p and q. In practice,
however, we shall select the simplest integral.
Note. In what follows we shall use the following standard notations:

∂f

∂x
= fx,

∂f

∂y
= fy,

∂f

∂z
= fz,

∂f

∂p
= fp,

∂f

∂q
= fq
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Charpit’s Method

Therefore, Charpit’s auxiliary equations (11) may be re–written as

dp

fx + pfz
=

dq

fy + qfz
=

dz

−pfp − qfq
=

dx

−fp
=

dy

−fq
=
dF

0
(11′)

Working Rule While Using Charpit’s Method

Step 1. Transfer all terms of the given equation to L.H.S. and denote the entire
expression by f .
Step 2. Write down the Charpit’s auxiliary equations.

dp

fx + pfz
=

dq

fy + qfz
=

dz

−pfp − qfq
=

dx

−fp
=

dy

−fq
(11′)
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Charpit’s Method

Step 3. Using the value of f in step 1 write down the values of ∂f/∂x, ∂f/∂y, . . . ,
i.e., fx, fy, . . . etc. occurring in step 2 and put these in Charpit’s auxiliary equations.
Step 4. After simplifying the step 3, select two proper fractions so that the resulting
integral may come out to be the simplest relation involving at least one of p and q.
Step 5. The simplest relation of step 4 is solved along with the given equation to
determine p and q. Put these values of p and q in

dz = p dx+ q dy

which on integration gives the complete integral of the given equation.

The Singular and General integrals may be obtained in the usual manner.
Remark. Sometimes Charpit’s equations give rise to p = a and q = b, where a and b
are constants. In such cases, putting p = a and q = b in the given equation will give
the required complete integral.
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Charpit’s Method

Ex. 1. Find a complete integral of z = px+ qy + p2 + q2.
Sol. Let

f(x, y, z, p, q) ≡ z − px− qy − p2 − q2 = 0 (1)

Charpit’s auxiliary equations are

dp

fx + pfz
=

dq

fy + qfz
=

dz

−pfp − qfq
=

dx

−fp
=

dy

−fq
(2)

From (1),

fx = −p, fy = −q, fz = 1, fp = −x− 2p, fq = −y − 2q (3)

Mathematical Explorations Non-Linear Partial Differential Equation September 1, 2025 30 / 86



Charpit’s Method

Using (3), (2) reduces to

dp

0
=
dq

0
=

dz

p(x+ 2p) + q(y + 2q)
=

dx

x+ 2p
=

dy

y + 2q
. (4)

Taking the first fraction of (4), dp = 0 so that

p = a. (5)

Taking the second fraction of (4), dq = 0 so that

q = b. (6)

Putting p = a and q = b in (1), the required complete integral is

z = ax+ by + a2 + b2,

where a, b are arbitrary constants.
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Charpit’s Method

Ex. 2. Find a complete integral of px+ qy = pq.
Sol. Let,

f(x, y, z, p, q) ≡ px+ qy − pq = 0 (1)

Charpit’s auxiliary equations are

dp

fx + pfz
=

dq

fy + qfz
=

dz

−pfp − qfq
=

dx

−fp
=

dy

−fq
or

dx

−(x− q)
=

dy

−(y − q)
=

dz

−p(x− q)− q(y − p)
=

dp

p+ p · 0
=

dq

q + q · 0
. (2)

Taking the last two fractions of (2),

1

p
dp =

1

q
dq
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Charpit’s Method

Integrating,
log p = log q + log a or p = aq (3)

Substituting this value of p in (1), we have

aqx+ qy − aq2 = 0 ⇒ aq = ax+ y, (q ̸= 0). (4)

∴ q =
ax+ y

a
, p = ax+ y (5)

Putting these values of p and q in dz = p dx+ q dy, we get

dz = (ax+ y)dx+
(ax+ y)

a
dy,
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Charpit’s Method

or,
adz = (ax+ y)(a dx+ dy)

Let, u = ax+ y, then
adz = (ax+ y)(a dx+ dy) = u du

Integrating,

az =
u2

2
+ b

Hence,

az =
(ax+ y)2

2
+ b,

which is a complete integral, a and b being arbitrary constants.
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Charpit’s Method

Ex. 3. Find a complete, singular and general integrals of (p2 + q2)y = qz.
Sol. Let,

f(x, y, z, p, q) = (p2 + q2)y − qz = 0 (1)

Charpit’s auxiliary equations are

dp

fx + pfz
=

dq

fy + qfz
=

dz

−pfp − qfq
=

dx

−fp
=

dy

−fq
.

or
dp

−pq
=
dq

p2
=

dz

−2p2y + qz − 2q2y
=

dx

−2py
=

dy

−2qy + z
, by (1) (2)

Taking the first two fractions, we get

2pdp+ 2qdq = 0 ⇒ p2 + q2 = a (3)
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Charpit’s Method

Using (3), (1) gives
a2y = qz

Putting this value of q in (3), we get

p =
√
a2 − q2 =

√
a2 −

(
a2y

z

)2

=
a

z

√
z2 − a2y2

Now putting these values of p and q in dz = pdx+ qdy, we have

dz =
a

z

√
z2 − a2y2 dx+

a2y

z
dy,

or
zdz − a2y dy√
z2 − a2y2

= a dx
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Charpit’s Method

Integrating,
(z2 − a2y2)1/2 = ax+ b or z2 − a2y2 = (ax+ b)2, (4)

which is a required complete integral, a, b being arbitrary constants.
Singular Integral. Differentiating (4) partially w.r.t. a and b, we have

0 = 2ay2 + 2(ax+ b)x (5)

and
0 = 2(ax+ b). (6)

Eliminating a and b between (4), (5) and (6), we get z = 0 which clearly satisfies (1)
and hence it is the singular integral.
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Charpit’s Method

General Integral. Replacing b by ϕ(a) in (4), we get

z2 − a2y2 = [ax+ ϕ(a)]2. (7)

Differentiating (7) partially w.r.t. a,

−2ay2 = 2[ax+ ϕ(a)] · [x+ ϕ′(a)]. (8)

General integral is obtained by eliminating a from (7) and (8).
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Charpit’s Method: Standard Form I

Standard Form I. Only p and q present.
Under this standard form, we consider equations of the form

f(p, q) = 0. (1)

Charpit’s auxiliary equations are

dp

fx + pfz
=

dq

fy + qfz
=

dz

−pfp − qfq
=

dx

−fp
=

dy

−fq
,

giving
dp

0
=
dq

0
, by (1).
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Charpit’s Method: Standard Form I

Taking the first ratio, dp = 0 so that

p = constant = a, say. (2)

Substituting in (1), we get

f(a, q) = 0, ⇒ q = constant = b, say, (3)

where b is such that
f(a, b) = 0.

Then,
dz = p dx+ q dy = adx+ bdy, using (2) and (3).
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Charpit’s Method: Standard Form I

Integrating,
z = ax+ by + c, (5)

where c is an arbitrary constant. (5) together with (4) give the required solution.
Now solving (4) for b, suppose we obtain

b = F (a), say.

Putting this value of b in (5), the complete integral of (1) is

z = ax+ yF (a) + c, (6)

which contains two arbitrary constants a and c which are equal to the number of
independent variables, namely x and y.
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Charpit’s Method: Standard Form I

The singular integral of (1) is obtained by eliminating a and c between the complete
integral (6) and the equations obtained by differentiating (6) partially w.r.t. a and c;
i.e., between

z = ax+ yF (a) + c, 0 = x+ yF ′(a), 0 = 1. (7)

Since the last equation in (7) is meaningless, we conclude that the equations of standard
form I have no singular solution.
In order to find the general integral of (1), we first take c = ϕ(a) in (6), ϕ being an
arbitrary function, and obtain

z = ax+ yF (a) + ϕ(a). (8)

Now, we differentiate (8) partially with respect to a and get

0 = x+ yF ′(a) + ϕ′(a). (9)
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Charpit’s Method: Standard Form I

Eliminating a between (8) and (9), we get the general solution of (1).
Remark. Sometimes change of variables can be employed to transform a given equa-
tion to standard form I.

Ex. 1. Solve: p2 + q2 = m2, where m is a constant.
Sol. Given that

p2 + q2 = m2. (1)

Since (1) is of the form f(p, q) = 0, its solution is

z = ax+ by + c, (2)

where a2 + b2 = m2 or b = (m2 − a2)1/2, on putting a for p and b for q in (1).

∴ From (2), the complete integral is z = ax+ y(m2 − a2)1/2 + c, (3)
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Charpit’s Method: Standard Form I

which contains two arbitrary constants a and c.
For singular solution, differentiating (3) partially with respect to a and c, we get

0 = x− ay

(m2 − a2)1/2
, and 0 = 1.

But 0 = 1 is absurd. Hence there is no singular solution of (1).
For general solution, let c = ϕ(a) in (3). Then, we get

z = ax+ y(m2 − a2)1/2 + ϕ(a). (4)

Differentiating (4) partially with respect to a, we get

0 = a− ay

(m2 − a2)1/2
+ ϕ′(a). (5)

Eliminating a from (4) and (5), we get the required general solution.
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Equations Reducible to Standard Form I

Ex. 1. Find the complete integral of x2p2 + y2q2 = z
Sol. The given equation can be rewritten as

x2

z

(
∂z

∂x

)2

+
y2

z

(
∂z

∂y

)2

= 1 or

(
x√
z

∂z

∂x

)2

+

(
y√
z

∂z

∂y

)2

= 1. (1)

Let,
(1/x)dx = dX, (1/y)dy = dY, (1/

√
z)dz = dZ,

so that
log x = X, log y = Y, 2

√
z = Z. (2)

Using (2), (1) becomes(
∂Z

∂X

)2

+

(
∂Z

∂Y

)2

= 1 or P 2 +Q2 = 1, (4)
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Equations Reducible to Standard Form I

where P = ∂Z/∂X and Q = ∂Z/∂Y .
(4) is of the form f(P,Q) = 0.
∴ Solution of (4) is

Z = aX + bY + c, (5)

where a2 + b2 = 1 or b =
√
1− a2, on putting a for P and b for Q in (4).

∴ From (5), the required complete integral is

Z = aX + Y
√

1− a2 + c or 2
√
z = a log x+ log y ·

√
1− a2 + c. (3)

or
log xa + log y

√
1−a2 − log c′ = 2

√
z, taking c = − log c′,

or
log{xay

√
1−a2/c′} = 2

√
z,
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Equations Reducible to Standard Form I

where a and c′ are two arbitrary constants.

∴ xay
√
1−a2 = c′e2

√
z.
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Standard Form II. Clairaut Equation

A first order partial differential equation is said to be of Clairaut form if it can be
written in the form

z = px+ qy + f(p, q) (1)

Let
F (x, y, z, p, q) ≡ px+ qy + f(p, q)− z (2)

Charpit’s auxiliary equations are

dp
∂F
∂x + p∂F∂z

=
dq

∂F
∂y + q ∂F∂z

=
dz

−p∂F∂p − q ∂F∂q
=

dx

−∂F
∂p

=
dy

−∂F
∂q

or

dp

0
=
dq

0
=

dz

−px− qy − p
(
∂f
∂p

)
− q

(
∂f
∂q

) =
dx

−x−
(
∂f
∂p

) =
dy

−y −
(
∂f
∂q

) , by (1)
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Standard Form II. Clairaut Equation

Then, first and second fractions =⇒ dp = 0 and dq = 0 =⇒ p = a, q = b.
Substituting these values in (1), the complete integral is

z = ax+ by + f(a, b)

Remark 1. Observe that the complete integral of (1) is obtained by merely replacing
p and q by a and b respectively. Singular and general integrals can be obtained by
usual methods.
Remark 2. Sometimes change of variables can be employed to transform a given
equation to standard form II.

Ex. 1. Solve z = px+ qy + pq.
Sol. The complete integral is

z = ax+ by + ab, a, b being arbitrary constants (1)
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Standard Form II. Clairaut Equation

Singular integral. Differentiating (1) partially w.r.t. a and b, we have

0 = y + a, (2)

and
a = x+ b.

Eliminating a and b between (1) and (2), we get

z = −xy − xy + xy i.e., z = −xy,

which is the required singular solution, for it satisfies the given equation.
General Integral. Let, b = ϕ(a), where ϕ denotes an arbitrary function.
Then (1) becomes

z = ax+ ϕ(a)y + aϕ(a). (3)
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Standard Form II. Clairaut Equation

Differentiating (3) partially w.r.t. a,

0 = x+ ϕ′(a)y + ϕ(a)− aϕ′(a). (4)

The general integral is obtained by eliminating a between (3) and (4).
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Standard Form III. Only p, q and z present.

Under this standard form we consider differential equation of the form

f(p, q, z) = 0 (1)

Charpit’s auxiliary equations are

dp
∂f
∂x + p∂f∂z

=
dq

∂f
∂y + q ∂f∂z

=
dz

−p∂f∂p − q ∂f∂q
=

dx

−∂f
∂p

=
dy

−∂f
∂q

.

or
dp

p
(
∂f
∂z

) =
dq

q
(
∂f
∂z

) =
dz

−p
(
∂f
∂p

)
− q

(
∂f
∂q

) =
dx

−∂f
∂p

=
dy

−∂f
∂q

, using (1)

Taking the first two ratios,
(1/p)dp = (1/q)dq
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Standard Form III. Only p, q and z present.

Integrating,
q = ap, a being an arbitrary constant. (2)

Now,
dz = p dx+ q dy = p dx+ ap dy, using (2)

or
dz = p(dx+ ady) = pd(x+ ay) = p du, (3)

where
u = x+ ay. (4)

Now, (3) ⇒ p = dz
du and so by (2) q = ap = a

(
dz
du

)
.
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Standard Form III. Only p, q and z present.

Substituting these values of p and q in (1), we get

f

(
dz

du
, a

dz

du
, z

)
= 0, (5)

which is an ordinary differential equation of first order. Solving (5), we get z as a
function of u. Complete integral is then obtained by replacing u by (x+ ay).

Working rule for solving equations of the form f(p, q, z) = 0

Step I. Let,
f(p, q, z) = 0 (1)
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Standard Form III. Only p, q and z present.

and set
u = x+ ay, a is an arbitrary constant. (2)

Step II. Replace p and q by
dz

du
and a

dz

du
respectively in (1) and solve the resulting

ordinary differential equation of first order by usual methods.
Step III. Replace u by x+ ay in the solution obtained in Step II.

Ex. 1. Solve p2 + q2 = z.
Sol. Given equation is

p2 + q2 = z. (1)

which is of the form f(p, q, z) = 0.
Let u = x+ ay, where a is an arbitrary constant.
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Standard Form III. Only p, q and z present.

Now, replacing p and q by dz
du and a dz

du respectively in (1), we have(
dz

du

)2

+ a2
(
dz

du

)2

= z or

(
dz

du

)2

=
z

(1 + a2)
.

Thus,
dz

du
= ± z1/2

(1 + a2)1/2
or ± z−1/2(1 + a2)1/2 dz = du.

Integrating,

±2z1/2(1 + a2)1/2 = u+ b or ± 2z1/2(1 + a2)1/2 = x+ ay + b.

Thus,
4z(1 + a2) = (x+ ay + b)2, a, b being arbitrary constants. (2)
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Standard Form III. Only p, q and z present.

(2) is the complete integral of the given equation (1).
Differentiating (2) partially w.r.t. a and b, we get

8az = 2y(x+ ay + b) or 4az = y(x+ ay + b), (3)

0 = 2(x+ ay + b) or x+ ay + b = 0. (4)

Substituting the value of (x+ ay + b) from (4) in (3), we have

4az = 0 or z = 0,

which is the singular solution.
In order to get the general solution, let us put b = ψ(a) in (2) and get

4z(1 + a2)− {x+ ay + ψ(a)}2 = 0. (5)
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Standard Form III. Only p, q and z present.

Differentiating (5) partially w.r.t. a,

8az − 2{x+ ay + ψ(a)}{y + ψ′(a)} = 0. (6)

The required general solution is given by (5) and (6).
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Standard form IV. Equation of the form f1(x, p) = f2(y, q)

In this form z does not appear and the terms containing x and p are on one side and
those containing y and q on the other side.
Let,

F (x, y, z, p, q) = f1(x, p)− f2(y, q) = 0. (1)

Then Charpit’s auxiliary equations are

dp
∂F
∂x + p∂F∂z

=
dq

∂F
∂y + q ∂F∂z

=
dz

−p∂F∂p − q ∂F∂q
=

dx

−∂F
∂p

=
dy

−∂F
∂q

or

dp
∂f1
∂x

=
dq

−∂f2
∂y

=
dz

−p(∂f1/∂p) + q(∂f2/∂q)
=

dx

−∂f1/∂p
=

dy

∂f2/∂q
, by (1).
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Standard form IV. Equation of the form f1(x, p) = f2(y, q)

Taking the first and the fourth ratios, we have(
∂f1
∂p

)
dp+

(
∂f1
∂x

)
dx = 0 or df1 = 0.

Integrating,
f1 = a, a being an arbitrary constant.

∴ (1) ⇒ f1(x, p) = f2(y, q) = a. (2)

Now,
(2) ⇒ f1(x, p) = a and f2(y, q) = a. (3)

From (3), on solving for p and q respectively, we get

p = F1(x, a), q = F2(y, a), (4)
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Standard form IV. Equation of the form f1(x, p) = f2(y, q)

Substituting these values in dz = p dx+ q dy, we get

dz = F1(x, a) dx+ F2(y, a) dy.

Integrating,

z =

∫
F1(x, a) dx+

∫
F2(y, a) dy + b,

which is a complete integral containing two arbitrary constants a and b.

Remark 1. Sometimes change of variables can be employed to reduce a given equation
in the standard form IV.
Remark 2. Singular and general integral are obtained by well known methods.

Ex. 1. Find a complete integral of x(1 + y)p = y(1 + x)q.
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Standard form IV. Equation of the form f1(x, p) = f2(y, q)

Sol. Separating p and x from q and y, the given equation reduces to

xp

1 + x
=

yq

1 + y

Equating each side to an arbitrary constant a, we have

xp

1 + x
= a and

yq

1 + y
= a

so that

p = a

(
1 + x

x

)
and q = a

(
1 + y

y

)
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Standard form IV. Equation of the form f1(x, p) = f2(y, q)

Putting these values of p and q in dz = p dx+ q dy, we get

dz =
a(1 + x)

x
dx+

a(1 + y)

y
dy = a

(
1

x
+ 1

)
dx+ a

(
1

y
+ 1

)
dy

Integrating,

z = a(log x+ x) + a(log y + y) + b = a(log xy + x+ y) + b,

which is a complete integral containing two arbitrary constants a and b.
Ex. 2. Find a complete integral of p2 + q2 = z2(x+ y).
Sol. Given (

∂z

∂x

)2

+

(
∂z

∂y

)2

= z2(x+ y)
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Standard form IV. Equation of the form f1(x, p) = f2(y, q)

or (
1

z

∂z

∂x

)2

+

(
1

z

∂z

∂y

)2

= x+ y (1)

Let
(1/z)dz = dZ so that log z = Z. (2)

Using (2), (1) becomes (
∂Z

∂x

)2

+

(
∂Z

∂y

)2

= x+ y,

where P = ∂Z/∂x and Q = ∂Z/∂y. Separating P and x from Q and y, we get

P 2 − x = y −Q2.
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Standard form IV. Equation of the form f1(x, p) = f2(y, q)

Equating each side to an arbitrary constant a, we have

P 2 − x = a and y −Q2 = a

so that
P =

√
a+ x, Q =

√
y − a.

Putting these values of P and Q in

dZ = P dx+Qdy, ⇒ dZ =
√
a+ x dx+

√
y − a dy.

Integrating,

Z = 2
3

[
(a+ x)3/2 + (y − a)3/2

]
+ 2

3b.

∴ log z = 2
3

[
(a+ x)3/2 + (y − a)3/2 + b

]
is a complete integral, using Z = log z.
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JACOBI’S METHOD

JACOBI’S METHOD
This method is used for solving partial differential equations involving three or more
independent variables. The central idea of Jacobi’s method is almost the same as that
of Charpit’s method for two independent variables. We begin with the case of three
independent variables. The results arrived at are, however, general and will be used
with suitable modification for the case of four independent variables and so on.
Let

p1 =
∂z

∂x1
, p2 =

∂z

∂x2
, p3 =

∂z

∂x3
.

Consider a partial differential equation

f(x1, x2, x3, p1, p2, p3) = 0. (1)
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JACOBI’S METHOD

The main idea in Jacobi’s method is to get two additional partial differential equations
of the first order

F1(x1, x2, x3, p1, p2, p3) = a1, (2)

F2(x1, x2, x3, p1, p2, p3) = a2, (3)

where a1 and a2 are two arbitrary constants such that (1), (2) and (3) can be solved
for p1, p2, p3 in terms of x1, x2, x3 which when substituted in

dz = p1dx1 + p2dx2 + p3dx3, (4)

makes it integrable, for which the conditions are

∂p2
∂x1

=
∂p1
∂x2

,
∂p3
∂x2

=
∂p2
∂x3

,
∂p1
∂x3

=
∂p3
∂x1

. (5)
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JACOBI’S METHOD

Differentiating (1) and (2) partially w.r.t. x1, we have

∂f

∂x1
+
∂f

∂p1

∂p1
∂x1

+
∂f

∂p2

∂p2
∂x1

+
∂f

∂p3

∂p3
∂x1

= 0, (6)

and
∂F1

∂x1
+
∂F1

∂p1

∂p1
∂x1

+
∂F1

∂p2

∂p2
∂x1

+
∂F1

∂p3

∂p3
∂x1

= 0. (7)

Eliminating
∂p1
∂x1

from (6) and (7), we have

(
∂f

∂x1

∂F1

∂p1
− ∂F1

∂x1

∂f

∂p1

)
+

(
∂f

∂p2

∂F1

∂p1
− ∂F1

∂p2

∂f

∂p1

)
∂p2
∂x1

+

(
∂f

∂p3

∂F1

∂p1
− ∂F1

∂p3

∂f

∂p1

)
∂p3
∂x1

= 0.

(8)

Mathematical Explorations Non-Linear Partial Differential Equation September 1, 2025 68 / 86



JACOBI’S METHOD

Similarly, differentiating (1) and (2) partially w.r.t. x2 and then eliminating
∂p2
∂x2

from

the resulting equations, we have(
∂f

∂x2

∂F1

∂p2
− ∂F1

∂x2

∂f

∂p2

)
+

(
∂f

∂p1

∂F1

∂p2
− ∂F1

∂p1

∂f

∂p2

)
∂p1
∂x2

+

(
∂f

∂p3

∂F1

∂p2
− ∂F1

∂p3

∂f

∂p2

)
∂p3
∂x2

= 0.

(9)

Again, differentiating (1) and (2) partially w.r.t. x3 and then eliminating
∂p3
∂x3

from

the resulting equations, we have(
∂f

∂x3

∂F1

∂p3
− ∂F1

∂x3

∂f

∂p3

)
+

(
∂f

∂p1

∂F1

∂p3
− ∂F1

∂p1

∂f

∂p3

)
∂p1
∂x3

+

(
∂f

∂p2

∂F1

∂p3
− ∂F1

∂p2

∂f

∂p3

)
∂p2
∂x3

= 0.

(10)
Adding (8), (9) and (10) and using the relations (5), we have
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(
∂f

∂x1

∂F1

∂p1
− ∂f

∂p1

∂F1

∂x1

)
+

(
∂f

∂x2

∂F1

∂p2
− ∂f

∂p2

∂F1

∂x2

)
+

(
∂f

∂x3

∂F1

∂p3
− ∂f

∂p3

∂F1

∂x3

)
= 0. (11)

The L.H.S. of (11) is generally denoted by (f, F1). Then, (11) becomes

(f, F1) =

3∑
r=1

(
∂f

∂xr

∂F1

∂pr
− ∂f

∂pr

∂F1

∂xr

)
= 0. (11′)

Starting with (1) and (3) in place of (1) and (2) and proceeding as above, we have a
similar relation

(f, F2) =

3∑
r=1

(
∂f

∂xr

∂F2

∂pr
− ∂f

∂pr

∂F2

∂xr

)
= 0. (12)
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Again, starting with (2) and (3) in place of (1) and (2) and proceeding as above, we
again have a similar relation

(F1, F2) =

3∑
r=1

(
∂F1

∂xr

∂F2

∂pr
− ∂F1

∂pr

∂F2

∂xr

)
= 0. (13)

(11) [or (11′)] and (12) are linear equations of first order with x1, x2, x3, p1, p2, p3 as
independent variables and F1, F2 as dependent variables respectively. For both of these
equations, Lagrange’s auxiliary equations are

dp1
∂f/∂x1

= − dx1
∂f/∂p1

,
dp2

∂f/∂x2
= − dx2

∂f/∂p2
,

dp3
∂f/∂x3

= − dx3
∂f/∂p3

, (14)

which are known as Jacobi’s auxiliary equations.
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We try to find two independent integrals

F1(x1, x2, x3, p1, p2, p3) = a1

F2(x1, x2, x3, p1, p2, p3) = a2

with help of (14). If these relations satisfy (13), these are the required two additional
relations (2) and (3).

We now solve (1), (2) and (3) for p1, p2, p3 in terms of x1, x2, x3. Substituting these
values in (4) and then integrating the resulting equation, we shall obtain a complete
integral of the given equation containing three arbitrary constants of integration.
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Working rules for solving partial differential equations with three or more
independent variables. Jacobi’s method
Step I: Suppose the given equation with three independent variables is

f(x1, x2, x3, p1, p2, p3) = 0 (1)

Step II. We write Jacobi’s auxiliary equations

dp1
∂f/∂x1

=
−dx1
∂f/∂p1

=
dp2

∂f/∂x2
=

−dx2
∂f/∂p2

=
dp3

∂f/∂x3
=

−dx3
∂f/∂p3

Solving these equations we obtain two additional equations

F1(x1, x2, x3, p1, p2, p3) = a1 (2)

Mathematical Explorations Non-Linear Partial Differential Equation September 1, 2025 73 / 86



JACOBI’S METHOD

F2(x1, x2, x3, p1, p2, p3) = a2, (3)

where a1 and a2 are arbitrary constants.
While obtaining (2) and (3), try to select simple equations so that later on solutions
of (1), (2) and (3) may be as easy as possible.
Step III. Verify that relations (2) and (3) satisfy the condition

(F1, F2) =

3∑
r=1

(
∂F1

∂xr

∂F2

∂pr
− ∂F1

∂pr

∂F2

∂xr

)
= 0. (4)

If (4) is satisfied then solve (1), (2) and (3) for p1, p2, p3 in terms of x1, x2, x3. Their
substitution in

dz = p1dx1 + p2dx2 + p3dx3
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and subsequent integration leads to a complete integral of the given equation.
Remark 1. Sometime, change of variables can be employed to reduce the given
equation in a form solvable by Jacobian method.
Remark 2. While solving a partial differential equation with four independent vari-
ables, we modify the above working rule as follows:
Step I. Suppose the given equation with four independent variables is

f(x1, x2, x3, x4, p1, p2, p3, p4) = 0. (1)

Step II. We write Jacobi’s auxiliary equations

dp1
∂f/∂x1

=
−dx1
∂f/∂p1

=
dp2

∂f/∂x2
=

−dx2
∂f/∂p2

=
dp3

∂f/∂x3
=

−dx3
∂f/∂p3

=
dp4

∂f/∂x4
=

−dx4
∂f/∂p4

.
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Solving these equations we obtain three additional equations

F1(x1, x2, x3, x4, p1, p2, p3, p4) = a1 (2)

F2(x1, x2, x3, x4, p1, p2, p3, p4) = a2 (3)

and
F3(x1, x2, x3, x4, p1, p2, p3, p4) = a3, (4)

where a1, a2 and a3 are arbitrary constants.
Step III. Verify that relations (2), (3) and (4) satisfy following three conditions:

(F1, F2) =

4∑
r=1

(
∂F1

∂xr

∂F2

∂pr
− ∂F1

∂pr

∂F2

∂xr

)
= 0, (5)
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(F2, F3) =

4∑
r=1

(
∂F2

∂xr

∂F3

∂pr
− ∂F2

∂pr

∂F3

∂xr

)
= 0, (6)

(F3, F1) =

4∑
r=1

(
∂F3

∂xr

∂F1

∂pr
− ∂F3

∂pr

∂F1

∂xr

)
= 0. (7)

If (5), (6) and (7) are satisfied, then solve (1), (2), (3) and (4) for p1, p2, p3 and p4 in
terms of x1, x2, x3 and x4. Their substitution in

dz = p1dx1 + p2dx2 + p3dx3 + p4dx4

and subsequent integration leads to a complete integral of the given equation.
Ex. 1. Find a complete integral of p31 + p22 + p3 = 1.
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Sol. Let the given equation be rewritten as

f(x1, x2, x3, p1, p2, p3) = p31 + p22 + p3 − 1 = 0. (1)

∴ Jacobi’s auxiliary equations are

dp1
∂f/∂x1

=
dx1

−∂f/∂p1
=

dp2
∂f/∂x2

=
dx2

−∂f/∂p2
=

dp3
∂f/∂x3

=
dx3

−∂f/∂p3
or

dp1
0

=
dx1
−3p21

=
dp2
0

=
dx2
−2p2

=
dp3
0

=
dx3
−1

, using (1).

From first and third fractions, dp1 = 0 and dp2 = 0 so that p1 = a1 and p2 = a2.
Here

F1(x1, x2, x3, p1, p2, p3) = p1 = a1 (2)

Mathematical Explorations Non-Linear Partial Differential Equation September 1, 2025 78 / 86



JACOBI’S METHOD

and
F2(x1, x2, x3, p1, p2, p3) = p2 = a2. (3)

Now,

(F1, F2) =

3∑
r=1

(
∂F1

∂xr

∂F2

∂pr
− ∂F1

∂pr

∂F2

∂xr

)
or

(F1, F2) =
∂F1

∂x1

∂F2

∂p1
− ∂F1

∂p1

∂F2

∂x1
+
∂F1

∂x2

∂F2

∂p2
− ∂F1

∂p2

∂F2

∂x2
+
∂F1

∂x3

∂F2

∂p3
− ∂F1

∂p3

∂F2

∂x3
.

or

(F1, F2) = (0)(0)− (1)(0) + (0)(1)− (0)(0) + (0)(0)− (0)(0) = 0, by (3) and (4).
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Thus, we have verified that for relations (2) and (3), (F1, F2) = 0. Hence (2) and (3)
may be taken as additional equations.
Solving (1), (2) and (3) for p1, p2, p3, p1 = a1, p2 = a2, p3 = 1− a31 − a22.
Putting these values in dz = p1dx1 + p2dx2 + p3dx3, we have

dz = a1dx1 + a2dx2 + (1− a31 − a22)dx3.

Integrating,
z = a1x1 + a2x2 + (1− a31 − a22)x3 + a3,

which is a complete integral of the given equation containing three arbitrary constants
a1, a2, and a3.
Ex. 2. Find a complete integral of p3x3(p1 + p2) + x1 + x2 = 0.
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Sol. Given
f(x1, x2, x3, p1, p2, p3) = p3x3(p1 + p2) + x1 + x2 = 0 (1)

∴ Jacobi’s auxiliary equations are

dp1
∂f/∂x1

=
dx1

−∂f/∂p1
=

dp2
∂f/∂x2

=
dx2

−∂f/∂p2
=

dp3
∂f/∂x3

=
dx3

−∂f/∂p3

⇒ dp1
1

=
dx1
p3x3

=
dp2
1

=
dx2

−p3x3
=

dp3
p3(p2 + p3)

=
dx3

−x3(p1 + p2)
, by (1) (2)

Taking the two fractions of (2),

dp1 − dp2 = 0 ⇒ p1 − p2 = a1 (3)
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Let
F1(x1, x2, x3, p1, p2, p3) = p1 − p2 = a1

Taking the fifth and sixth fractions of (2),

1

p3
dp3 +

1

x3
dx3 = 0 ⇒ p3x3 = a3 (4)

Let
F2(x1, x2, x3, p1, p2, p3) = p3x3 = a2

Now,

(F1, F2) =

3∑
r=1

(
∂F1

∂xr

∂F2

∂pr
− ∂F1

∂pr

∂F2

∂xr

)

Mathematical Explorations Non-Linear Partial Differential Equation September 1, 2025 82 / 86



JACOBI’S METHOD

=

(
∂F1

∂x1

∂F2

∂p1
− ∂F1

∂p1

∂F2

∂x1

)
+

(
∂F1

∂x2

∂F2

∂p2
− ∂F1

∂p2

∂F2

∂x2

)
+

(
∂F1

∂x3

∂F2

∂p3
− ∂F1

∂p3

∂F2

∂x3

)

= (0)(0)− (1)(0) + (0)(0)− (−1)(0) + (0)(x3)− (0)(p3) = 0 by (3) and (4)

Thus, we have verified that for the relations (3) and (4), (F1, F2) = 0.
From (1) and (4),

a2(p1 + p2) + x1 + x2 = 0 ⇒ p1 + p2 = −x1 + x2
a2

(5)
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Solving (3) and (5),

p1 =
a1
2

− x1 + x2
2a2

, p2 = −a1
2

− x1 + x2
2a2

(6)

Again, from (4),

p3 =
a2
x3

(7)

Putting the values of p1, p2, p3 given by (6) and (7) in

dz = p1dx1 + p2dx2 + p3dx3,

we have
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dz =
a1
2
(dx1 − dx2)−

x1 + x2
2a2

(dx1 + dx2) +
a2
x3
dx3

Integrating,

z =
a1
2
(x1 − x2)−

1

4a2
(x1 + x2)

2 + a2 log x3 + a3
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