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Principle of Equivalence

Statement:

The Principle of Equivalence is a fundamental concept
in Einstein’s theory of General Relativity. It states
that the effects of gravity and acceleration are indis-
tinguishable in a small, localized region of space. This
means that an observer in a closed system (like an ele-
vator or spaceship) cannot tell whether the force they
experience is due to gravity or uniform acceleration.
In simple terms: Being in a gravitational field is
equivalent to being in an accelerated frame of refer-
ence.

Figure 1: Inside elevator
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Types of Equivalence Principles

There are two main versions of this principle:

Weak Equivalence Principle (WEP)

Also known as the Galilean Equivalence Principle, it states that the motion of an
object in a gravitational field is independent of its mass or composition.
Example: A feather and a hammer, when dropped in a vacuum (like on the
Moon, as shown by Apollo 15 astronauts), fall at the same rate.

Einstein’s Strong Equivalence Principle (SEP)

It extends the WEP by stating that locally, the effects of gravity are indistinguish-
able from acceleration. This means that being in a gravitational field is equivalent
to being in an accelerated frame of reference.
Example: A person in free fall can’t distinguish between gravity and acceleration.
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Mach’s Principle

Mach’s Principle is a philosophical and physical idea proposed by Ernst Mach
(1838–1916), which suggests that the inertia of an object arises from its interaction
with the total mass of the universe.

Core Idea

The inertia (resistance to acceleration) of an object is not an inherent property
but is determined by the presence and distribution of all other masses in the
universe.

In simpler terms, if the universe were empty, there would be no inertia—an
isolated object wouldn’t ”resist” acceleration because there would be nothing
else to define motion.
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Explanation of Mach’s Principle

1. Inertia is a Collective Effect

When you push an object, its resistance to motion (inertia) is due to the
gravitational influence of distant stars and galaxies.

2. Rotating Bucket Experiment

If you spin a bucket of water, the water’s surface curves (centrifugal effect).

According to Mach’s Principle, the reason this happens is that the entire
universe provides a reference frame for rotation.

If the stars and galaxies didn’t exist, would the water still form a curved
surface? Mach’s Principle suggests it wouldn’t because rotation is only mean-
ingful relative to the mass of the universe.

3. No Absolute Space

Unlike Newton’s idea of absolute space, Mach’s Principle suggests that mo-
tion is always defined relative to other objects.
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Principle of Covariance

The Principle of Covariance states that the fundamental laws of physics must have
the same form in all coordinate systems. This principle ensures that physical laws
are independent of the observer’s choice of reference frame.
Understanding the Principle:
1. General Covariance (Einstein’s Definition)

The equations describing physical laws should remain valid under any
coordinate transformation (including transformations between accelerating
frames).

This is a key idea in General Relativity, where Einstein formulated gravi-
tational laws using tensor equations, ensuring that they hold true in any
reference frame.

2. Special Covariance (Restricted Case)

Some physical laws may be valid only in specific types of coordinates, such as
inertial frames (like in Special Relativity).
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Geodesic Principle

The Geodesic Principle is a fundamental concept in General Relativity that de-
scribes how objects move in curved spacetime. It states that:

An object moving under gravity alone (without any external force) follows the
shortest or straightest possible path in curved spacetime, called a geodesic.

A geodesic is like a ”straight line” in curved spacetime, similar to how a great
circle (like the equator) is the shortest path between two points on a sphere.

In flat space (no gravity), a geodesic is just a straight line.

In curved space (with gravity), a geodesic appears curved because space
and time themselves are curved by mass and energy.
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Geodesic Principle

Geodesic Motion in General Relativity

In Einstein’s theory, gravity is not a force but a result of spacetime curvature.

Objects move along geodesics naturally, just like a ball rolling on a curved
surface.

This explains why planets orbit the Sun. They are not ”pulled” by a force but
instead follow geodesics in the curved spacetime created by the Sun’s mass.
Example: Imagine you are inside an elevator in deep space, far from any
gravity. If the elevator is turned off, you float weightlessly. Now, imagine
the elevator is falling freely under gravity near Earth. Inside, you again feel
weightless, because both you and the elevator are following the same geodesic.
This is why astronauts in orbit feel weightless—they are in free fall along a
geodesic of curved spacetime.
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Newtonian Approximation of Relativistic Equations of Motion

When studying motion, we usually start with Newton’s laws of motion, which
describe how objects move under the influence of forces. However, when an object
moves very fast—close to the speed of light (c), Newtonian physics no longer
provides accurate results. Instead, we use Einstein’s Special Theory of Relativity,
which gives the correct equations for motion at high speeds.

However, if the speed of the object is much slower than the speed of light (v ≪ c),
then relativistic motion should simplify to Newtonian motion. This process is
called the Newtonian approximation of relativistic equations of motion.

Newton’s Law of Momentum:
In Newtonian mechanics, momentum is given by:

p = mv (1)
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Newtonian Approximation of Relativistic Equations of Motion

where:

p = momentum,

m = mass,

v = velocity of the object.

Relativistic Momentum:
When an object moves at speeds close to c, its mass appears to increase due to
relativistic effects. The correct equation for momentum is:

p = γmv (2)

where:

γ =
1√

1− v2

c2

(3)

is the Lorentz factor, which accounts for relativistic effects.Mathematical Explorations Relativity & Cosmology February 21, 2025 9 / 27



Newtonian Approximation of Relativistic Equations of Motion

Newtonian Approximation: If v ≪ c, we use a Taylor expansion for γ to
approximate:

γ ≈ 1 +
1

2

v2

c2
(4)

Substituting this into the relativistic momentum equation:

p ≈
(
1 +

1

2

v2

c2

)
mv (5)

For very small v/c, we can ignore 1
2
v2

c2
, so:

p ≈ mv (6)

This is exactly the Newtonian momentum equation, meaning Newtonian mechanics
is a good approximation at low speeds.
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Newtonian Approximation of Relativistic Equations of Motion

Relativistic Energy Equation:
Einstein’s famous energy equation is:

E = γmc2 (7)

Expanding γ for small speeds:

E ≈ mc2 +
1

2
mv2 (8)

The first term mc2 is the rest energy (exists even when the object is not
moving).

The second term 1
2mv

2 is the familiar Newtonian kinetic energy.

At low speeds, Einstein’s energy equation reduces to the Newtonian K.E.
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Newtonian Approximation of Relativistic Equations of Motion

Newton’s Second Law:

F = m
dv

dt
(9)

This states that force is equal to mass times acceleration.
Relativistic Force Equation:
In relativity, force is given by:

F =
d

dt
(γmv) (10)

For slow speeds (v ≪ c), since γ ≈ 1, this simplifies to:

F ≈ m
dv

dt
(11)
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Newtonian Approximation of Relativistic Equations of Motion

Newtonian Motion as a Limit of Relativity

Relativistic momentum reduces to p = mv when v ≪ c.

Relativistic energy reduces to E = 1
2mv

2 plus rest energy.

Relativistic force equation simplifies to Newton’s second law.

Newtonian mechanics is just a low-speed approximation of relativity.
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Newtonian Eqns of Motion as an Approx. of Geodesic Eqns

Geodesic equations are reducible to Newtonian equations of motion in
case of weak static field.
Proof: Let us consider the motion of a test particle in case a weak static field.
The motion of a test particle is governed by geodesic equations as given below:

d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= 0 (1)

Since the field is static, i.e., it does not change with time. Hence, velocity compo-
nents can be taken as:

dx1

ds
=
dx2

ds
=
dx3

ds
= 0; and

dx4

ds
= 1 (2)
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Newtonian Equation of Motion - Geodesic Equations

Galilean coordinates are:

x1 = x, x2 = y, x3 = z, x4 = ct (3)

A weak static field is characterized by taking:

gµν = ηµν + hµν such that gµν = 0 for µ ̸= ν (4)

where,

ηµν is the Minkowski metric (Galilean values in a weak field limit).

hµν represents small perturbations in the metric caused by gravity.

Mathematical Explorations Relativity & Cosmology February 21, 2025 15 / 27



Newtonian Equation of Motion - Geodesic Equations

Nature of hµν

The function hµν depends only on spatial coordinates (x, y, z) and is indepen-
dent of time, ensuring that the gravitational field is static.

The deviation from unity is represented by hµν and it is assumed to be small
so that terms involving higher powers of hµν (like h2µν) can be neglected.

Metric Components in a Weak Static Field
The Minokswki metric for this weak field approximation is

η11 = η22 = η33 = −η44 = −1, ηµν = 0 = gµν (µ ̸= ν) (5)

The spatial components η11, η22, η33 correspond to the three spatial dimen-
sions.

η44 corresponds to the time component.

Mathematical Explorations Relativity & Cosmology February 21, 2025 16 / 27



Newtonian Equation of Motion - Geodesic Equations

The metric equation in general relativity is given by:

ds2 = gµνdx
µdxν (6)

where:

ds is the infinitesimal proper time interval (or spacetime interval),

gµν is the metric tensor,

dxµ and dxν are infinitesimal coordinate displacements.

Dividing both sides by ds2, we obtain:

1 = gµν
dxµ

ds

dxν

ds
(7)

This equation represents the normalization condition for a timelike geodesic.

Mathematical Explorations Relativity & Cosmology February 21, 2025 17 / 27



Newtonian Equation of Motion - Geodesic Equations

In the weak static field approximation, only the time component (g44) significantly
contributes, while spatial components remain small or negligible, so

1 = g44
dx4

ds

dx4

ds
(8)

Since x4 corresponds to time, we substitute x4 = ct (where c is the speed of light
and t is coordinate time), so

dx4 = cdt. (9)

Thus,

1 = g44

(
c
dt

ds

)(
c
dt

ds

)
(10)
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Newtonian Equation of Motion - Geodesic Equations

From weak-field gravity, we assume:

g44 = 1 + h44, (11)

where h44 represents small perturbations in the gravitational field. Substituting
this into the equation (10):

1 = (1 + h44)c
2 dt

ds
· dt
ds

=> ds2 = (1 + h44)c
2dt2

(12)

Taking the first approximation, we assume that the perturbation h44 is small and
can be neglected in this initial step. This simplifies the equation to:

ds2 = c2dt2

=> ds = cdt
(13)
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Newtonian Equation of Motion - Geodesic Equations

From equation (2), since we are considering the weak-field case where only the
time component dominates, we take µ = 4 and ν = 4, reducing the equation to:

d2xα

ds2
+ Γα44

dx4

ds

dx4

ds
= 0 (14)

We have,

x4 = ct⇒ dx4

ds
= c

dt

ds
(15)

Again,

ds = cdt⇒ dt

ds
=

1

c
(16)
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Newtonian Equation of Motion - Geodesic Equations

Therefore,

dx4

ds
= 1 (17)

Substituting this into the geodesic equation:

d2xα

ds2
+ Γα44(1)

2 = 0 ⇒ d2xα

ds2
= −Γα44

⇒ −Γα44 =
d

ds

(
dxα

ds

)
=

d

cdt

(
dxα

cdt

)
=

1

c2
d2xα

dt2

⇒ d2xα

dt2
= −c2Γα44 (18)
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Newtonian Equation of Motion - Geodesic Equations

Since the field is static,

Γ4
44 = 0 (19)

Hence,

d2xα

dt2
= −c2Γα44, where α = 1, 2, 3 (20)

Expanding the Christoffel symbols,

Γα44 = gαβΓ44,β = gααΓ44,α = gαα
1

2

(
2
∂gα4
∂xα

− ∂g44
∂xα

)
=

1

2gαα

[
− ∂

∂xα
(1 + h44)

]
=

1

2
(−1 + hαα)

−1

(
−∂h44
∂xα

)
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Newtonian Equation of Motion - Geodesic Equations

=
1

2

1

(−1 + hαα)

(
−∂h44
∂xα

)
=

1

2

1

(−1)(1− hαα)

(
−∂h44
∂xα

)
=

1

2
(1− hαα)

−1

(
∂h44
∂xα

)
=

1

2
(1 + hαα)

(
∂h44
∂xα

)
[∵ hαα is small, 1 + hαα ≈ 1]

=
1

2

(
∂h44
∂xα

)
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Newtonian Equation of Motion - Geodesic Equations

Thus, equation (20) becomes

d2xα

dt2
= −c

2

2

∂h44
∂xα

. (21)

The Newtonian equation of motion is given by,

d2xα

dt2
= − ∂ψ

∂xα
, (22)

where ψ is the potential function.
Equating equations (21) and (22) we get,

−c
2

2

∂h44
∂xα

= − ∂ψ

∂xα
. (23)
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Newtonian Equation of Motion - Geodesic Equations

Integrating,

∫
∂h44
∂xα

dxα =
2

c2

∫
∂ψ

∂xα
dxα

⇒
∫
dh44 =

2

c2

∫
dψ

⇒ h44 =
2ψ

c2
+ const

⇒ 1 + h44 = 1 +
2ψ

c2
+ const

⇒ g44 =
2ψ

c2
+ k
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Newtonian Equation of Motion - Geodesic Equations

Choosing ψ such that when g44 = 1, ψ = 0 so that k = 1. Then

g44 = 1 +
2ψ

c2

Hence, geodesic equations are reducible to Newtonian equations of motion in case
of weak static field if g44 = 1 + 2ψ

c2
.
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THANK YOU
Vist the website for notes

https://mathematicalexplorations.co.in
Subscribe to my YouTube Channel
Mathematical Explorations
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