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Poisson’s Equation as an Approximation of Field Equations

To show that (Einstein’s) field equations reduce in linear approximation
to Newtonian equations (Poisson’s equations)

∇2ψ = 4πρ

Proof: Let us Consider the motion of a test particle in a weak static field. A
weak static field is characterized by taking:

gµν = ηµν + hµν (1)

where ηµν is a metric tensor for Galilean line element and hµν is a function of
x, y, z. The deviation of the metric from unity is represented through hµν . The
quantities hµν are taken to be so small that the powers of hµν higher than the first
are neglected. Here we have:

η11 = η22 = η33 = −η44 = −1, ηµν = 0 = gµν for µ ̸= ν (2)
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Poisson’s Equation as an Approximation of Field Equations

Since the field is static, i.e., it does not change with time and hence, velocity
components can be taken as:

dx1

ds
=
dx2

ds
=
dx3

ds
= 0; and

dx4

ds
= 1 (3)

Galilean coordinates are:

x1 = x, x2 = y, x3 = z, x4 = ct (4)

The geodesic equations are reduced to Newtonian equations of motion if

g44 = 1 +
2ψ

c2

Let, c = 1 then

Mathematical Explorations Relativity & Cosmology February 24, 2025 2 / 11



Poisson’s Equation as an Approximation of Field Equations

g44 = 1 + 2ψ (5)

All the components of the energy tensor will be approximately equal to zero sep-
arately except

T44 = ρ

so that

T = gµνTµν = g44T44

= (1 + h44)
−1ρ

= (1− h44 + ...)ρ

= ρ
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Poisson’s Equation as an Approximation of Field Equations

∴ T44 = ρ, T = ρ (6)

Field equations in general theory of relativity are given by,

Rµν −
1

2
Rgµν = −8πTµν (7)

By contracting both sides of the Einstein field equations with gµν , we get

gµνRµν −
1

2
Rgµνgµν = −8πgµνTµν

⇒ R− 4

2
R = −8πT

⇒ R = 8πT (8)
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Poisson’s Equation as an Approximation of Field Equations

Then from equation (7) we get,

Rµν −
1

2
8πTgµν = −8πTµν

⇒ Rµν = −8π

(
Tµν −

1

2
Tgµν

)
(9)

Therefore,

R44 = −8π

(
T44 −

1

2
Tg44

)
= −8π

(
ρ− 1

2
ρ.1

)
[∵ g44 ≈ 1]

= −4πρ (10)
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Poisson’s Equation as an Approximation of Field Equations

The Riemann curvature tensor is defined as

Ra
µνσ = −

∂Γa
µν

∂xσ
+
∂Γa

µσ

∂xν
+ Γb

µνΓ
a
bσ − Γb

µσΓ
a
bν

∴ R44 = Ra
44a = −∂Γ

a
44

∂xa
+
∂Γa

a4

∂x4
+ Γb

44Γ
a
ba − Γb

4aΓ
a
b4 (11)

Using first order approximation we get,

R44 = −∂Γ
a
44

∂xa
+
∂Γa

a4

∂x4
(12)

Since in a static approximation (no explicit dependence on x4, which represents

time), the term
∂Γa

a4
∂x4 can be neglected, therefore
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Newtonian Approximation of Relativistic Equations of Motion

R44 = −∂Γ
a
44

∂xa

⇒ ∂Γa
44

∂xa
= 4πρ (13)

Since the system is static, all components of metric tensor gµν are independent of
time x4.

∂gµν
∂x4

= 0 ∀ µ and ν

∴
∂Γ4

44

∂x4
= 0 (14)
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Newtonian Approximation of Relativistic Equations of Motion

Hence,

∂Γa
44

∂xa
= 4πρ, a = 1, 2, 3 (15)

If a = 1, 2, 3, then

Γa
44 = gabΓ44,b = gaaΓ44,a = gaa

1

2

(
∂g4a
∂x4

+
∂g4a
∂x4

− ∂g44
∂xa

)
=

1

−1 + haa

1

2

(
−∂g44
∂xa

)
= (1− haa)

−1 1

2

∂g44
∂xa

= (1 + haa + . . . )
1

2

∂g44
∂xa

=
1

2

∂g44
∂xa

(16)
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Newtonian Approximation of Relativistic Equations of Motion

Now equation (15) reduces to

∂

∂xa

(
1

2

∂g44
∂xa

)
= 4πρ

⇒
3∑

a=1

∂2g44
∂xa∂xa

= 8πρ (17)

By definition, the Laplacian ∇2 in three-dimensional Cartesian coordinates is:

∇2g44 =

3∑
a=1

∂2g44
∂xa∂xa

(18)
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Newtonian Approximation of Relativistic Equations of Motion

Thus from equations (17) and (18) we get,

∇2g44 = 8πρ

⇒ ∇2(1 + 2ψ) = 8πρ

⇒ ∇2ψ = 4πρ (19)

which is Poisson’s equation.
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