FLUID DYNAMICS

MAT 401

Source, Sink and Doublet

Dr. Rajshekhar Roy Baruah

Source

An outward symmetrical radial flow of fluid in all directions is termed as a three dimensional *source* or a *point source* or a *simple source*.

Thus, a source is a point at which fluid is *continuously created* and *distributed* e.g. an expanding bubble of gas pushing away the surrounding fluid.

Sink

A negative source is called a *sink*. At such points, the fluid is constantly moving radially *inwards* from all directions in a symmetrical manner.

Let us consider a source at the origin. Then the *mass m* of the fluid coming out from the origin in unit time is known as the *strength of the source*.

Similarly, the amount of fluid going into the sink in a unit time is called the *strength of the sink*.

Thus a simple sink of strength *m* is a simple source of strength *–m*.

Complex Potential due to a Source:

Let us consider a source of strength *m* at the origin O.

To determine complex potential *w* at a point $P(r, \theta)$ due to this source.

The velocity of P due to the source is purely radial, let this be q_r at a distance *r*.

The flux across a circle of radius r surrounding the source at O is $2\pi r q_r$. Also, a source of strength m is such that the flow across any small curve surrounding it is $2\pi m$.

By conservation of mass in a steady incompressible flow, we have

> $2\pi r q_r = 2\pi m$ $\Rightarrow q_r = \frac{m}{r}$

Then,

$$
u = q_r \cos \theta = \frac{m}{r} \cos \theta
$$

$$
v = q_r \sin \theta = \frac{m}{r} \sin \theta
$$

 $w = -mlog z$

(Neglecting constant of integration)

which is the required expression for complex potential due to a source .

Deductions:

1. If the source $+m$ is at a point $z = z₁$ in place of $z = 0$; then by shifting the origin the complex potential is given by $w = -m \log(z - z_1)$.

2. The complex potential *w* at any point *z* due to sources of strength m_1 , m_2 , m_3 , ... situated at the points $z = z_1, z_2, z_3, \dots$ is given by

 $w = -m_1 log(z - z_1) - m_2 log(z - z_2) - -m_3 log(z - z_3) - \cdots$

Doublet or Dipole

A combination of a source of strength *+m* and a sink of strength *–m* at a small distance δs apart, where in the limit *m* is taken infinitely great and δs infinitely small but so that the product $m\delta s$ remains finite and equal to μ , is called a doublet of strength μ and the line δs taken in the sense from $-m$ to $+m$ is taken as the axis of the doublet.

Complex Potential due to a Doublet

Let, *A* and *B* be the positions of the sink and source of equal strength *m* and *P* be any point in the space.

Let, $AP = \vec{r} + \delta\vec{r}$, $BP = \vec{r}$ and PAB makes angle θ with the axis of the doublet. Let, BM be perpendicular drawn from B on

AP.

Then,
\n
$$
AM = AP - MP = (\vec{r} + \delta \vec{r}) - \vec{r} = \delta \vec{r}
$$
\n
$$
\cos \theta = \frac{AM}{AB} = \frac{\delta r}{\delta S} \Rightarrow \delta r = \delta S \cos \theta
$$

We have from Cauchy-Riemann equation, $\partial \phi$

 ∂r = $1 \partial \psi$ \boldsymbol{r} $\partial \theta$

 (2)

which represents the complex potential for a doublet of strength at the origin directed along x-axis.

Remark 1: Equi-potential curves are given by $\phi = constant$ => $\mu cos\theta$ \boldsymbol{r} $= constant$ => $cos\theta$ \boldsymbol{r} $=$ \mathcal{C} \Rightarrow $rcos\theta = Cr^2$ $\Rightarrow x = C(x^2 + y^2)$

which represents circles touching y-axis at the origin.

Streamlines are given by

 $\psi = constant$ => $-\mu sin\theta$ \boldsymbol{r} $= constant$ => $sin\theta$ \boldsymbol{r} $= C'$ \Rightarrow $rsin\theta = C'r^2$

 $\Rightarrow y = C'(x^2 + y^2)$

which represents circles touching x-axis at the origin.

Remark 3:

 $i\alpha$ $i\alpha$ If the doublet makes an angle θ with x-axis, then θ will be replaced by $\theta - \alpha$ so that

$$
w = \frac{\mu}{re^{i(\theta - \alpha)}} = \frac{\mu e^{i\alpha}}{re^{i\theta}} = \frac{\mu e^{i\alpha}}{z}
$$

If the doublet be at the point $A(x', y')$ where $z' = x' + iy'$ then we have

$$
w=\frac{\mu e^{i\alpha}}{z-z'}
$$

Remark 4:

If the doublets of strengths $\mu_1, \mu_2, \mu_3, \dots$ situated at the points $z = z_1, z_2, z_3, \dots$ and their axes making angles $\alpha_1, \alpha_2, \alpha_3, ...$ with x-axis, then the complex potential due to the above system is given by

$$
w = \frac{\mu_1 e^{i\alpha_1}}{z - z_1} + \frac{\mu_2 e^{i\alpha_2}}{z - z_2} + \frac{\mu_3 e^{i\alpha_3}}{z - z_3} + \cdots
$$