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Bernoulli’s theorem

Statement: Bernoulli’s theorem, also known as Bernoulli’s principle, states that 

the whole mechanical energy of the moving fluid, which includes gravitational 

potential energy of elevation, fluid pressure energy, and kinetic energy of fluid 

motion, remains constant.
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𝜌𝑞2 + 𝜌𝑔ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Bernoulli’s equation is given as follows-

where, p is the pressure exerted by the fluid

            q is the velocity of the fluid

             𝜌 is the density of the fluid

            h is the height of the container
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Let us consider a container in the shape of a pipe, whose two edges are placed at 

different heights and varying diameters. The relationship between the areas of 

cross-sections A, the flow speed q, height from the ground h, and pressure p at 

two different points 1 and 2 are given in the figure below.

Let us assume that the density of the incompressible fluid remains constant at 

both points and the energy of the fluid is conserved as there are no viscous 

forces in the fluid.

The work done at point 1 where the force 𝐹1 is exerted to displace the fluid to 

𝑑𝑥1 is

𝑑𝑊1 =  𝐹1 
𝑑𝑥1 

Here, the force exerted at point 1 is given by, 𝐹1 =  𝑃1𝐴1 
where 𝑃1 and 𝐴1 are the pressure exerted and cross-sectional area at point 1.



𝑑𝑊1 =  𝑃1𝐴1 
𝑑𝑥1 

Similarly, the work done by the fluid at point 2 is:

⇒  𝑑𝑊1 
=  𝑃1 

𝑑𝑣

𝑑𝑊2 =  𝑃2𝐴2 
𝑑𝑥2

⇒  𝑑𝑊2 =  𝑃2 
𝑑𝑣

Now, the total work done by the fluid flowing through the container is,

𝑑𝑊 =  𝑃1 
𝑑𝑣 –  𝑃2 

𝑑𝑣

⇒  𝑑𝑊 =  (𝑃1 –  𝑃2) 𝑑𝑣 (1)

Now, the change in the kinetic energy of the fluid is given by,

𝑑𝐾 =
1

2
𝑚2𝑞2

2 −
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2
𝑚1𝑞1

2



But the mass of the fluid is
𝑚 =  𝜌𝑑𝑣

Similarly, the gravitational potential energy is,

𝑑𝑈 = 𝑚2𝑔ℎ2 – 𝑚1𝑔ℎ1

(1)

According to the law of conservation of energy,

𝑑𝐾 =
1

2
𝜌𝑑𝑣 𝑞2

2 − 𝑞1
2

Therefore,

𝑑𝑈 = 𝜌𝑑𝑣𝑔 ℎ2 – ℎ1

𝑑𝑊 = 𝑑𝐾 + 𝑑𝑈

𝑃1 –  𝑃2  𝑑𝑣 =
1

2
𝜌𝑑𝑣 𝑞2

2 − 𝑞1
2 + 𝜌𝑑𝑣𝑔 ℎ2 – ℎ1

=> 𝑃1 –  𝑃2  =
1

2
𝜌 𝑞2

2 − 𝑞1
2 + 𝜌𝑔 ℎ2 – ℎ1



This is Bernoulli’s equation and can be expressed as

=> 𝑃1 +
1

2
𝜌𝑞1

2 + 𝜌𝑔ℎ1 = 𝑃2 +
1

2
𝜌𝑞2

2 + 𝜌𝑔ℎ2

𝑃 +
1

2
𝜌𝑞2 + 𝜌𝑔ℎ = constant ∎
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Motion in Two Dimensions

If the lines of motion are parallel to a 

fixed plane and if the velocity at 

corresponding points of all planes has 

the same magnitude and direction, then 

the motion is said to be two 

dimensional.

If (x, y, z) are coordinates of any point 

in the fluid, then all physical quantities 

associated with the fluid are 

independent of z. Thus u and v are 

functions of x, y and t and 𝑤 = 0 for 

such a motion.
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Stream Function or Current Function

Let u and v be the components of velocity in two-dimensional motion. Then the 

differential equation of lines of flow or streamline is

𝑑𝑥

𝑢
=

𝑑𝑦

𝑣

and the equation of continuity is

=> 𝑣𝑑𝑥 − 𝑢𝑑𝑦 = 0

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 =>

𝜕𝑣

𝜕𝑦
=

𝜕(−𝑢)

𝜕𝑥

(1)

(2)

Equation (2) shows that LHS of equation (1) must be an exact differential, 𝑑𝜓 (say). 

Thus we have,

𝑣𝑑𝑥 − 𝑢𝑑𝑦 = 𝑑𝜓 =
𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦 (3)



so that,
𝑣 =

𝜕𝜓

𝜕𝑥
𝑢 = −

𝜕𝜓

𝜕𝑦

This function 𝜓 is known as the stream function.

Using equations (1) and (3), the streamlines are given by

(4)

𝑑𝜓 = 0 => 𝜓 = 𝑐, where c is arbitrary constant.

Thus the stream function is constant along a streamline.
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Let LM be any curve in XY-plane and let 

𝜓1 and 𝜓2 be the stream functions at L 

and M respectively.
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Let P be an arbitrary point on LM such 

that arc LP = s and let Q be a 

neighbouring point on LM such that arc 

LQ = s+𝛿𝑠.

Let LM be any curve in XY-plane and let 

𝜓1 and 𝜓2 be the stream functions at L 

and M respectively.
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Let 𝜃 be be the angle between tangent at 

P and x-axis.

If u and v be the velocity components at 

P then the direction cosines of the 

normal at P are 

Let P be an arbitrary point on LM such 

that arc LP = s and let Q be a 

neighbouring point on LM such that arc 

LQ = s+𝛿𝑠.

Let LM be any curve in XY-plane and let 

𝜓1 and 𝜓2 be the stream functions at L 

and M respectively.

cos 90 + 𝜃 , 𝑐𝑜𝑠𝜃, 0  i.e. −𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃, 0
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The flow across the 

curve from right to left is
= න

𝐿𝑀

Ԧ𝑞. ො𝑛𝑑𝑠

ො𝑛 = −𝑠𝑖𝑛𝜃 Ƹ𝑖 + 𝑐𝑜𝑠𝜃 Ƹ𝑗

Ԧ𝑞 = 𝑢 Ƹ𝑖 + 𝑣 Ƹ𝑗

= න

𝐿𝑀

𝑢 Ƹ𝑖 + 𝑣 Ƹ𝑗 . −𝑠𝑖𝑛𝜃 Ƹ𝑖 + 𝑐𝑜𝑠𝜃 Ƹ𝑗 𝑑𝑠

= න

𝐿𝑀

−𝑢𝑠𝑖𝑛𝜃 + 𝑣𝑐𝑜𝑠𝜃 𝑑𝑠

When 𝜓 is stream function then we have

𝑢 = −
𝜕𝜓

𝜕𝑦
,  𝑣 =

𝜕𝜓

𝜕𝑥

(1)

𝑐𝑜𝑠𝜃 =
𝑑𝑥

𝑑𝑠
,  𝑠𝑖𝑛𝜃 =

𝑑𝑦

𝑑𝑠

dS

dx

dy
𝜃
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=> (1) = න

𝐿𝑀

𝜕𝜓

𝜕𝑦
𝑠𝑖𝑛𝜃 +

𝜕𝜓

𝜕𝑥
𝑐𝑜𝑠𝜃 𝑑𝑠

= න

𝐿𝑀

𝜕𝜓

𝜕𝑦

𝑑𝑦

𝑑𝑠
+

𝜕𝜓

𝜕𝑥

𝑑𝑥

𝑑𝑠
𝑑𝑠

= න

𝐿𝑀

𝜕𝜓

𝜕𝑥

𝑑𝑥

𝑑𝑠
+

𝜕𝜓

𝜕𝑦

𝑑𝑦

𝑑𝑠
𝑑𝑠

= න

𝐿𝑀

𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦

= න

𝜓1

𝜓2

𝑑𝜓 = 𝜓2 − 𝜓1
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where 𝜓1 and 𝜓2 are the values of 𝜓 at 

the initial and final points of the curve. 

Thus the difference of the values of a 

stream function at any two points 

represents the flow across that curve, 

joining the two points.
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Complex Potential

Let, 𝑤 = 𝜙 + 𝑖𝜓 be taken as a function of 𝑥 + 𝑖𝑦 i.e., 𝑧. 

Let, 𝑤 = 𝑓(𝑧) i.e. 𝜙 + 𝑖𝜓 = 𝑓(𝑥 + 𝑖𝑦) (1)

Differentiating equation (1) w.r.t. 𝑥 and 𝑦 respectively, we get

𝜕𝜙

𝜕𝑥
+ 𝑖

𝜕𝜓

𝜕𝑥
= 𝑓′ 𝑥 + 𝑖𝑦

𝜕𝜙

𝜕𝑦
+ 𝑖

𝜕𝜓

𝜕𝑦
= 𝑖𝑓′ 𝑥 + 𝑖𝑦

=>
𝜕𝜙

𝜕𝑦
+ 𝑖

𝜕𝜓

𝜕𝑦
= 𝑖

𝜕𝜙

𝜕𝑥
+ 𝑖

𝜕𝜓

𝜕𝑥

(2)

(3)

and

Equating real and imaginary parts we get,
𝜕𝜙

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
,

𝜕𝜙

𝜕𝑦
=

𝜕𝜓

𝜕𝑥



which are Cauchy-Riemann equations. Then 𝑤 is an analytic function of 𝑧 and 𝑤 is 

known as the complex potential.

Conversely, if w is an analytic function of z, then its real part is the velocity potential and 

imaginary part is the stream function of an irrotational two-dimensional motion.
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