Material, Local and Connective Derivative :

Let a fluid particle moves from P(x,y,z) attime tto Q(x + 6x,y + &y, z + 62)
at time t + &t. Further let f (x, y, z, t) be a scalar function associated with some
property of the fluid. Let the total change of / due to movement of the fluid
particle from P to Q be §f. Then we have
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where ¢ = (u, v, w) is the velocity of the fluid particle at P. Making 6t — 0 we
get
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and v=aa—xi+%j+;—zk (5)
From (4) and (5) we get,

ﬁ.V=u;—x+v%+W;—Z (6)

Using (6) and (3) reduces to
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Again let g(x,y, z,t) be a vector function associated with some property of the

fluid. Then proceeding as above, we have
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From (7) and (8), we have for both scalar and vector functions
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o 18 called the material derivative. The term 5. 18 called the local derivative and

it is associated with time variation at a fixed position. The term ¢.V is called the
connective derivative and it 1s associated with the change of a physical quantity

for g due to motion of the fluid particle.

Acceleration of a Fluid Particle:

Let a fluid particle moves from P(x,y, z) at time tto Q(x + éx,y + 6y, z + 6z)
at time t + 6t.

Let, d=wvw)=ul+vj+wk (1)
be the velocity of the fluid particle at P and let ¢ + 8¢ be the velocity of the

same fluid particle at Q. Then, we have
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Making 6t — 0 and using (3), (2) reduces to
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From (1) and (5) we get,
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Using (6), (4) may be re-written as
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which shows that the acceleration a of a fluid particle of fixed identity can be

expressed as the material derivative of the velocity vector q.
Components of acceleration in Cartesian Coordinates (x, y, z):
Let,d = a,i + a,j + a,k . Then
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Ex. 1. If the velocity distribution is § = Ax2yi + By?ztj + Czt*k, where 4, B,
C are constants, then find the acceleration and velocity components.
Sol. The velocity distribution is § = Ax2yi + By?ztj + Czt?k, where 4, B, C
are constants
The acceleration @ = a,i + a,j + a,k is given by
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g = ui + vj + wk = Ax?yi + By?ztj + Czt?k
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PPl (Ax2yt + By?ztj + Czt’k) = By?tj + Ct%k

d = By?zj + 2Cztk + Ax?y.2Axyi + By?zt(Ax?i + 2Byzt}) + Czt?(By?tj
+ Ct?k)
d = A(QAx3y? + Bx?y?zt)i + B(y?z + 2By3z%t? + Cy?zt3)j + C(2zt

+ CztHk

The components of acceleration (ay, a,, a,) are given by
a, = A(2Ax3y? + Bx?y?zt)
a, = B(y*z + 2By®z*t* + Cy?*zt?)
a, = C(2zt + Czt*)



Equation of Continuity:

The law of conservation of mass states that fluid mass can be neither
created nor destroyed. Physical quantities are said to be conserved when they do
not change with regard to time during a process. The mathematical expression
of the law of conservation of mass is known as the equation of continuity. In
continuous motion, the equation of continuity expresses the fact that the
increase in the mass of the fluid within any closed surface drawn in the fluid in
any time must be equal to the excess of the mass that flows in over the mass that

flows out.

Derivation:

Let us consider a closed surface S in a fluid
medium containing a volume / fixed in space. Let
P(x,v,z) be any point of S and let p(x,y, z, t) be the
fluid density at P at any time 7. Let, §S denote

element of the surface S enclosing P. Let, 71 be the

unit outward drawn normal at §S and let ¢ be the
fluid velocity at P.
Then the normal component of ¢ measured outward from V' = 7. g

Rate of mass flow across 65 per unit mass = p(#.§)6S
Total rate of mas s flow across S = |, ¢ p(. q)dS

= [, V.(p@)dV  [By Gauss divergence theorem]
Total rate of mass flow into J' = — fv V.(pq)dV (1)
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Also, rate of increase of mass within V'=— [ pdV = [, —=dV (2)

Let the region /' of the fluid contains neither sources nor sinks (i.e. there

are no inlets or outlets through which fluid can enter or leave the region). Then



by the law of conservation of the fluid mass, the rate of increase of the mass of
fluid within /' must be equal to the total rate of mass flowing into V.

Hence from (1) and (2) we get,
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which is known as equation of continuity or the conservation of mass and it
holds at all points of fluid free from sources and sinks.
Cor.1. Since V.(pq) = pV.q + Vp. g therefore the equation of continuity can

be expressed as
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Cor.2. For an incompressible and heterogeneous fluid, the density of any fluid

particle is invariable with time so that -~ = 0. Then

V.q=0iedivg=0

Cor.3. For an incompressible and homogeneous fluid, is constant and hence

Z—szthen V.(pq) =0
i.e.V.g=0
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Equation of Continuity in Cartesian Coordinates:
Let there be a fluid particle at
A(x,y,z). Let p(x,y,z,t) be the density b

of the fluid at 4 at any time 7 and let «, v, w c c

8y

be the velocity components at 4 parallel to

the rectangular coordinate axes. Let us 52

construct a small parallelepiped with edges X
0x,0y,6z of lengths parallel to their ,
respective coordinate axes, having 4 at one of the angular points as shown in
the figure.

Mass of the fluid that passes in through the face ABCD = (pdydz)u

per unit time

= [ (x,y,2) (say)
Mass of the fluid that passes out through the opposite face A'B'C'D’
= f(x + 6x,y,z) per unit time

= f(x,y,z) + 6x :—x f(x,y,z) + -+ (Expanding by Taylor’s theorem)

The net gain in mass per unit time within the element due to flow through
the faces ABCD and A'B'C'D’ by using (1) and (2) = Mass that enters in
through the face ABCD —
Mass that leaves through the face A’'B'C'D’

]
= f(x,y,z) - [f(x,y,z) + SXaf(X,y,Z) + ]
= —0x :—x flx,y,2) to the first order of approximation
]
= —0x—- (pudydz)
d
= —5x5y5za (pu)
Similarly, the net gain in mass per unit time within the element due to

flow through the faces ABA'B’ and CDC'D" = —6x8ydz % (pv)



The net gain in mass per unit time within the element due to flow through the
faces AA'DD" and BB'CC' = —6x8ydz ;—Z (pw)

Total rate of mass flow into the elementary parallelepiped

= —6x6y6z [a(pxu) + 6(6;;17) + a(g;v) (1)

Again, the mass of the fluid within the chosen element at time t = pdxdydz
Total rate of mass increase within the element = % (pb6xdydz)
= 5x8y52 2 )
at
Let the chosen region of the fluid contains neither sources nor sinks. Then
by the law of conservation of the fluid within the element must be equal to the

rate of mass flowing into the element.

Hence from (1) and (2), we have
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which is the desired equation of continuity in cartesian coordinates and it holds
at all point of the fluid free from sources and sinks.
Remark: If the fluid is incompressible and homogeneous then p is constant and

equation of continuity reduces to

6u+6v aw
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If the fluid is incompressible and heterogeneous, p is a function of x, y, z and ¢
such that L;—'Z = 0 then equation of continuity reduces to
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