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Material, Local and Connective Derivative : 

Let a fluid particle moves from 𝑃(𝑥, 𝑦, 𝑧) at time t to 𝑄(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧) 

at time 𝑡 + 𝛿𝑡. Further let 𝑓(𝑥, 𝑦, 𝑧, 𝑡) be a scalar function associated with some 

property of the fluid. Let the total change of f due to movement of the fluid 

particle from P to Q be 𝛿𝑓. Then we have 

𝛿𝑓 =
𝜕𝑓

𝜕𝑥
𝛿𝑥 +

𝜕𝑓

𝜕𝑦
𝛿𝑦 +

𝜕𝑓

𝜕𝑧
𝛿𝑧 +

𝜕𝑓

𝜕𝑡
𝛿𝑡 

Or,  

                                             
ఋ௙

ఋ௧
=

డ௙

డ௫

ఋ௫

ఋ௧
+

డ௙

డ௬

ఋ௬

ఋ௧
+

డ௙

డ௭

ఋ௭

ఋ௧
+

డ௙

డ௧
                             (1) 

Let,                        

 

 

       

                                                                                  

                                                               

(2) 

where 𝑞⃗ = (𝑢, 𝑣, 𝑤) is the velocity of the fluid particle at P. Making 𝛿𝑡 → 0 we 
get 

                                                         
஽௙

஽௧
= 𝑢

డ௙

డ௫
+ 𝑣

డ௙

డ௬
+ 𝑤

డ௙

డ௭
+

డ௙

డ௧
                   (3) 

But,                                                  𝑞⃗ = 𝑢𝚤̂ + 𝑣𝚥̂ + 𝑤𝑘෠                                      (4) 

and                                                   ∇=
డ

డ௫
𝚤̂ +

డ

డ௬
𝚥̂ +

డ

డ௭
𝑘෠                                  (5) 

From (4) and (5) we get, 

                                                         𝑞⃗. ∇= 𝑢
డ

డ௫
+ 𝑣

డ

డ௬
+ 𝑤

డ

డ௭
                           (6) 

Using (6) and (3) reduces to 
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஽௙

஽௧
=

డ௙

డ௧
+ (𝑞⃗. ∇)𝑓                                  (7) 

Again let 𝑔(𝑥, 𝑦, 𝑧, 𝑡) be a vector function associated with some property of the 

fluid. Then proceeding as above, we have 

                                                              
஽௚

஽௧
=

డ௚

డ௧
+ (𝑞⃗. ∇)𝑔                                (8) 

From (7) and (8), we have for both scalar and vector functions 

                                                             
஽

஽௧
=

డ

డ௧
+ (𝑞⃗. ∇)                                     (9) 

஽

஽௧
 is called the material derivative. The term 

డ

డ௧
 is called the local derivative and 

it is associated with time variation at a fixed position. The term 𝑞⃗. ∇ is called the 

connective derivative and it is associated with the change of a physical quantity 

f or g due to motion of the fluid particle. 

 

Acceleration of a Fluid Particle: 

Let a fluid particle moves from 𝑃(𝑥, 𝑦, 𝑧) at time t to 𝑄(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧) 

at time 𝑡 + 𝛿𝑡.  

Let,                                                      𝑞⃗ = (𝑢, 𝑣, 𝑤) = 𝑢𝚤̂ + 𝑣𝚥̂ + 𝑤𝑘෠               (1) 

be the velocity of the fluid particle at P and let 𝑞⃗ + 𝛿𝑞⃗ be the velocity of the 

same fluid particle at Q. Then, we have 

𝛿𝑞⃗ =
𝜕𝑞⃗

𝜕𝑥
𝛿𝑥 +

𝜕𝑞⃗

𝜕𝑦
𝛿𝑦 +

𝜕𝑞⃗

𝜕𝑧
𝛿𝑧 +

𝜕𝑞⃗

𝜕𝑡
𝛿𝑡 

Or,                               
ఋ௤ሬ⃗

ఋ௧
=

డ௤ሬ⃗

డ௫

ఋ௫

ఋ௧
+

డ௤ሬ⃗

డ௬

ఋ௬

ఋ௧
+

డ௤ሬ⃗

డ௭

ఋ௭

ఋ௧
+

డ௤ሬ⃗

డ௧
                                      (2) 

Let, 

lim
ఋ௧→଴

𝛿𝑞⃗

𝛿𝑡
=

𝐷𝑞⃗

𝐷𝑡
 𝑜𝑟 

𝑑𝑞⃗

𝑑𝑡
, 

lim
ఋ௧→଴

𝛿𝑥

𝛿𝑡
=

𝑑𝑥

𝑑𝑡
= 𝑢 

lim
ఋ௧→଴

𝛿𝑦

𝛿𝑡
=

𝑑𝑦

𝑑𝑡
= 𝑣 
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lim
ఋ௧→଴

𝛿𝑧

𝛿𝑡
=

𝑑𝑧

𝑑𝑡
= 𝑤 

                                                                                                                            (3) 

Making 𝛿𝑡 → 0 and using (3), (2) reduces to 

                                                     𝑎⃗ =
஽௤ሬ⃗

஽௧
= 𝑢

డ௤ሬ⃗

డ௫
+ 𝑣

డ௤ሬ⃗

డ௬
+ 𝑤

డ௤ሬ⃗

డ௭
+

డ௤ሬ⃗

డ௧
                (4) 

Let,                                              ∇=
డ

డ௫
𝚤̂ +

డ

డ௬
𝚥̂ +

డ

డ௭
𝑘෠                                           (5) 

From (1) and (5) we get, 

                                                     𝑞⃗. ∇= 𝑢
డ

డ௫
+ 𝑣

డ

డ௬
+ 𝑤

డ

డ௭
                               (6) 

Using (6), (4) may be re-written as 

                                               𝑎⃗ =
஽௤ሬ⃗

஽௧
= (𝑞⃗. ∇)𝑞⃗ +

డ௤ሬ⃗

డ௧
                                        (7) 

which shows that the acceleration 𝑎⃗ of a fluid particle of fixed identity can be 

expressed as the material derivative of the velocity vector 𝑞⃗. 

 

Components of acceleration in Cartesian Coordinates (x, y, z): 

Let, 𝑎⃗ = 𝑎௫𝚤̂ + 𝑎௬𝚥̂ + 𝑎௭𝑘෠  . Then 

𝑎௫𝚤̂ + 𝑎௬𝚥̂ + 𝑎௭𝑘෠ = 𝑢
𝜕

𝜕𝑥
(𝑢𝑖 ̂ + 𝑣𝑗̂ + 𝑤𝑘ො) + 𝑣

𝜕

𝜕𝑦
(𝑢𝑖 ̂ + 𝑣𝑗̂ + 𝑤𝑘)ෝ + 

                                               𝑤
డ

డ௭
(𝑢𝑖 ̂ + 𝑣𝑗̂ + 𝑤𝑘ො) +

𝜕

𝜕𝑡
(𝑢𝑖 ̂ + 𝑣𝑗̂ + 𝑤𝑘ො) 

𝑎௫ =
𝐷𝑢

𝐷𝑡
= 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝜕𝑡
 

𝑎௬ =
𝐷𝑣

𝐷𝑡
= 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
+

𝜕𝑣

𝜕𝑡
 

𝑎௭ =
𝐷𝑤

𝐷𝑡
= 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
+

𝜕𝑤

𝜕𝑡
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Ex. 1. If the velocity distribution is 𝑞⃗ = 𝐴𝑥ଶ𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡𝚥̂ + 𝐶𝑧𝑡ଶ𝑘෠, where A, B, 

C are constants, then find the acceleration and velocity components. 

Sol. The velocity distribution is 𝑞⃗ = 𝐴𝑥ଶ𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡𝚥̂ + 𝐶𝑧𝑡ଶ𝑘෠ , where A, B, C 

are constants 

The acceleration 𝑎⃗ = 𝑎௫𝚤̂ + 𝑎௬𝚥̂ + 𝑎௭𝑘෠ is given by 

𝑎⃗ =
𝜕𝑞⃗

𝜕𝑡
+ 𝑢

𝜕𝑞⃗

𝜕𝑥
+ 𝑣

𝜕𝑞⃗

𝜕𝑦
+ 𝑤

𝜕𝑞⃗

𝜕𝑧
 

Now, 

𝑞⃗ = 𝑢𝚤̂ + 𝑣𝚥̂ + 𝑤𝑘෠ =  𝐴𝑥ଶ𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡𝚥̂ + 𝐶𝑧𝑡ଶ𝑘෠  

∴ 𝑢 = 𝐴𝑥ଶ𝑦, 𝑣 = 𝐵𝑦ଶ𝑧𝑡, 𝑤 = 𝐶𝑧𝑡ଶ 

𝜕𝑞⃗

𝜕𝑡
=

𝜕

𝜕𝑡
൫𝐴𝑥ଶ𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡𝚥̂ + 𝐶𝑧𝑡ଶ𝑘෠൯ = 𝐵𝑦ଶ𝑧𝚥̂ + 2𝐶𝑧𝑡𝑘෠  

𝜕𝑞⃗

𝜕𝑥
=

𝜕

𝜕𝑥
൫𝐴𝑥ଶ𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡𝚥̂ + 𝐶𝑧𝑡ଶ𝑘෠൯ = 2𝐴𝑥𝑦𝚤̂ 

𝜕𝑞⃗

𝜕𝑦
=

𝜕

𝜕𝑦
൫𝐴𝑥ଶ𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡𝚥̂ + 𝐶𝑧𝑡ଶ𝑘෠൯ = 𝐴𝑥ଶ𝚤̂ + 2𝐵𝑦𝑧𝑡𝚥̂ 

𝜕𝑞⃗

𝜕𝑧
=

𝜕

𝜕𝑧
൫𝐴𝑥ଶ𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡𝚥̂ + 𝐶𝑧𝑡ଶ𝑘෠൯ = 𝐵𝑦ଶ𝑡𝚥̂ + 𝐶𝑡ଶ𝑘෠ 

𝑎⃗ = 𝐵𝑦ଶ𝑧𝚥̂ + 2𝐶𝑧𝑡𝑘෠ + 𝐴𝑥ଶ𝑦. 2𝐴𝑥𝑦𝚤̂ + 𝐵𝑦ଶ𝑧𝑡(𝐴𝑥ଶ𝚤̂ + 2𝐵𝑦𝑧𝑡𝚥̂) + 𝐶𝑧𝑡ଶ(𝐵𝑦ଶ𝑡𝚥̂

+ 𝐶𝑡ଶ𝑘෠) 

𝑎⃗ = 𝐴(2𝐴𝑥ଷ𝑦ଶ + 𝐵𝑥ଶ𝑦ଶ𝑧𝑡)𝚤̂ + 𝐵(𝑦ଶ𝑧 + 2𝐵𝑦ଷ𝑧ଶ𝑡ଶ + 𝐶𝑦ଶ𝑧𝑡ଷ)𝚥̂ + 𝐶(2𝑧𝑡

+ 𝐶𝑧𝑡ସ)𝑘෠ 

The components of acceleration (𝑎௫, 𝑎௬ , 𝑎௭) are given by 

𝑎௫ = 𝐴(2𝐴𝑥ଷ𝑦ଶ + 𝐵𝑥ଶ𝑦ଶ𝑧𝑡) 

𝑎௬ = 𝐵(𝑦ଶ𝑧 + 2𝐵𝑦ଷ𝑧ଶ𝑡ଶ + 𝐶𝑦ଶ𝑧𝑡ଷ) 

𝑎௭ = 𝐶(2𝑧𝑡 + 𝐶𝑧𝑡ସ) 
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Equation of Continuity: 

The law of conservation of mass states that fluid mass can be neither 

created nor destroyed. Physical quantities are said to be conserved when they do 

not change with regard to time during a process. The mathematical expression 

of the law of conservation of mass is known as the equation of continuity. In 

continuous motion, the equation of continuity expresses the fact that the 

increase in the mass of the fluid within any closed surface drawn in the fluid in 

any time must be equal to the excess of the mass that flows in over the mass that 

flows out. 

 

Derivation: 

Let us consider a closed surface S in a fluid 

medium containing a volume V fixed in space. Let 

P(x,y,z) be any point of S and let 𝜌(𝑥, 𝑦, 𝑧, 𝑡) be the 

fluid density at P at any time t. Let, 𝛿𝑆 denote 

element of the surface S enclosing P. Let, 𝑛ො be the 

unit outward drawn normal at 𝛿𝑆 and let 𝑞⃗ be the 

fluid velocity at P. 

Then the normal component of 𝑞⃗ measured outward from V = 𝑛ො. 𝑞⃗ 

Rate of mass flow across 𝛿𝑆 per unit mass = 𝜌(𝑛ො. 𝑞⃗)𝛿𝑆 

Total rate of mas s flow across S = ∫ 𝜌(𝑛ො. 𝑞⃗)𝑑𝑆
ௌ

 

                                                    = ∫ ∇. (𝜌𝑞⃗)𝑑𝑉
௏

   [By Gauss divergence theorem] 

Total rate of mass flow into V = − ∫ ∇. (𝜌𝑞⃗)𝑑𝑉
௏

                                   (1) 

Also, rate of increase of mass within V =
డ

డ௧
∫ 𝜌𝑑𝑉

௏
= ∫

డఘ

డ௧
𝑑𝑉

௏
                    (2) 

Let the region V of the fluid contains neither sources nor sinks (i.e. there 

are no inlets or outlets through which fluid can enter or leave the region). Then 
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by the law of conservation of the fluid mass, the rate of increase of the mass of 

fluid within V must be equal to the total rate of mass flowing into V.  

Hence from (1) and (2) we get,  

න
𝜕𝜌

𝜕𝑡
𝑑𝑉

௏

= − න ∇. (𝜌𝑞⃗)𝑑𝑉

௏

 

=> න ൤
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑞⃗)൨ 𝑑𝑉

௏

= 0 

=>
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑞⃗) = 0 

which is known as equation of continuity or the conservation of mass and it 

holds at all points of fluid free from sources and sinks. 

Cor.1. Since ∇. (𝜌𝑞⃗) = 𝜌∇. 𝑞⃗ + ∇𝜌. 𝑞⃗ therefore the equation of continuity can 

be expressed as 

𝜕𝜌

𝜕𝑡
+ 𝜌∇. 𝑞⃗ + ∇𝜌. 𝑞⃗ = 0 

𝐷𝜌

𝐷𝑡
+ 𝜌∇. 𝑞⃗ = 0 

𝐷

𝐷𝑡
(𝑙𝑜𝑔𝜌) + ∇. 𝑞⃗ = 0 

Cor.2. For an incompressible and heterogeneous fluid, the density of any fluid 

particle is invariable with time so that 
஽ఘ

஽௧
= 0. Then 

                                                 ∇. 𝑞⃗ = 0 i. e. div 𝑞⃗ = 0 

i. e.
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0, if 𝑞⃗ = 𝑢𝚤̂ + 𝑣𝚥̂ + 𝑤𝑘෠ 

Cor.3. For an incompressible and homogeneous fluid, is constant and hence 

డఘ

డ௧
= 0 then                                    ∇. (𝜌𝑞⃗) = 0 

𝑖. 𝑒. ∇. 𝑞⃗ = 0 

i. e.
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0, if 𝑞⃗ = 𝑢𝚤̂ + 𝑣𝚥̂ + 𝑤𝑘෠ 
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Equation of Continuity in Cartesian Coordinates: 

Let there be a fluid particle at 

𝐴(𝑥, 𝑦, 𝑧). Let 𝜌(𝑥, 𝑦, 𝑧, 𝑡) be the density 

of the fluid at A at any time t and let u, v, w 

be the velocity components at A parallel to 

the rectangular coordinate axes. Let us 

construct a small parallelepiped with edges 

𝛿𝑥, 𝛿𝑦, 𝛿𝑧 of lengths parallel to their 

respective coordinate axes, having A at one of the angular points as shown in 

the figure.  

Mass of the fluid that passes in through the face ABCD = (𝜌𝛿𝑦𝛿𝑧)𝑢  

                                                                                              per unit time  

                                                                                          = 𝑓(𝑥, 𝑦, 𝑧) (say) 

Mass of the fluid that passes out through the opposite face 𝐴ᇱ𝐵ᇱ𝐶ᇱ𝐷ᇱ 

= 𝑓(𝑥 + 𝛿𝑥, 𝑦, 𝑧) per unit time 

=  𝑓(𝑥, 𝑦, 𝑧) + 𝛿𝑥
డ

డ௫
𝑓(𝑥, 𝑦, 𝑧) + ⋯   (Expanding by Taylor’s theorem) 

The net gain in mass per unit time within the element due to flow through 

the faces ABCD and 𝐴ᇱ𝐵ᇱ𝐶ᇱ𝐷ᇱ by using (1) and (2) = Mass that enters in    

                                                                        through the face ABCD –        

                                                Mass that leaves through the face 𝐴ᇱ𝐵ᇱ𝐶ᇱ𝐷ᇱ 

=  𝑓(𝑥, 𝑦, 𝑧) − ቂ𝑓(𝑥, 𝑦, 𝑧) + 𝛿𝑥
డ

డ௫
𝑓(𝑥, 𝑦, 𝑧) + ⋯ ቃ      

= −𝛿𝑥
డ

డ௫
𝑓(𝑥, 𝑦, 𝑧)                      to the first order of approximation                                                                                          

= −𝛿𝑥
డ

డ௫
(𝜌𝑢𝛿𝑦𝛿𝑧) 

           = −𝛿𝑥𝛿𝑦𝛿𝑧
డ

డ௫
(𝜌𝑢) 

Similarly, the net gain in mass per unit time within the element due to 

flow through the faces AB𝐴ᇱ𝐵ᇱ and 𝐶𝐷𝐶ᇱ𝐷ᇱ = −𝛿𝑥𝛿𝑦𝛿𝑧
డ

డ௬
(𝜌𝑣) 
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The net gain in mass per unit time within the element due to flow through the 

faces A𝐴ᇱD𝐷ᇱ and 𝐵𝐵ᇱ𝐶𝐶ᇱ = −𝛿𝑥𝛿𝑦𝛿𝑧
డ

డ௭
(𝜌𝑤) 

Total rate of mass flow into the elementary parallelepiped  

                                       = −𝛿𝑥𝛿𝑦𝛿𝑧 ቂ
డ(ఘ௨)

డ௫
+

డ(ఘ௩)

డ௬
+

డ(ఘ௪)

డ௭
ቃ                            (1) 

Again, the mass of the fluid within the chosen element at time t = 𝜌𝛿𝑥𝛿𝑦𝛿𝑧 

Total rate of mass increase within the element =
డ

డ௧
(𝜌𝛿𝑥𝛿𝑦𝛿𝑧)  

                                                                           = 𝛿𝑥𝛿𝑦𝛿𝑧
డఘ

డ௧
                            (2) 

Let the chosen region of the fluid contains neither sources nor sinks. Then 

by the law of conservation of the fluid within the element must be equal to the 

rate of mass flowing into the element. 

Hence from (1) and (2), we have 

𝛿𝑥𝛿𝑦𝛿𝑧
𝜕𝜌

𝜕𝑡
= −𝛿𝑥𝛿𝑦𝛿𝑧 ቈ

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
቉ 

or,                
డఘ

డ௧
+ 𝜌

డ௨

డ௫
+ 𝑢

డఘ

డ௫
+ 𝜌

డ௩

డ௬
+ 𝑣

డఘ

డ௬
+ 𝜌

డ௪

డ௭
+ 𝑤

డఘ

డ௭
= 0 

or,                ቂ
డ

డ௧
+ 𝑢

డ

డ௫
+ 𝑣

డ

డ௬
+ 𝑤

డ

డ௭
ቃ 𝜌 + 𝜌 ቀ

డ௨

డ௫
+

డ௩

డ௬
+

డ௪

డ௭
ቁ = 0 

or,                 
஽ఘ

஽௧
+ 𝜌 ቀ

డ௨

డ௫
+

డ௩

డ௬
+

డ௪

డ௭
ቁ = 0 

which is the desired equation of continuity in cartesian coordinates and it holds 

at all point of the fluid free from sources and sinks. 

Remark: If the fluid is incompressible and homogeneous then 𝜌 is constant and 

equation of continuity reduces to 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

If the fluid is incompressible and heterogeneous, 𝜌 is a function of x, y, z and t 

such that 
஽ఘ

஽௧
= 0 then equation of continuity reduces to 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 


